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Abstract

We study how childhood exposure to technology at ages 5-15 via the
occupation of the parents affects the ability to climb the social ladder in
terms of income at ages 45-49 using the Danish micro data from years 1961-
2019. Our measure of technology exposure covers the degree to which using
computers (hardware and software) is required to perform an occupation, and
it is created by merging occupational codes with detailed data from O*NET.
The challenge in estimating this effect is that long-term outcome is observed
over a different time horizon than our treatment of interest. We therefore
adapt the surrogate index methodology, linking the effect of our childhood
treatment on intermediate surrogates, such as income and education at
ages 25-29, to the effect on adulthood income. We estimate that a one
standard error increase in exposure to technology increases the income rank
by 2%-points, which is economically and statistically significant and robust
to cluster-correlation within families. The derived policy recommendation
is to update the educational curriculum to expose children to computers to
a higher degree, which may then act as a social leveler.
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I. Introduction

Modern technologies have the potential to drastically reshape our economies
(Agrawal et al., 2019). The implications for labor markets are, however, not
fully understood, nor are the concerns new. As noted by Nobel laureate Wassily
Leontief: “Labor will become less and less important (. . .). More workers will be
replaced by machines” (Leontief, 1952). Throughout history, technological progress
has generated cultural anxiety despite being widely considered as the main source
of economic growth. The common concern covers technological unemployment
stemming from broad substitution of machines for labor (Mokyr et al., 2015).
However, transformations have taken place before, and yet, workers continue to
have jobs (Autor, 2015). But unlike prior technologies, modern technologies, e.g.,
artificial intelligence (AI), have the potential to disrupt high-skilled jobs (see, e.g.,
Darcy et al. (2016) or Dunis et al. (2016)). This raises the question of whether new
technologies are fundamentally different from previous technologies in a way that
Leontief’s prophecy may materialize. Two contrasting beliefs exist (Brynjolfsson
and McAfee, 2012, 2014). On the one hand, the pessimistic perspective argues
that human labor becomes obsolete as new technology replaces labor tasks. That
is, a worker competes with technology. The resulting technological unemployment
has been widely studied, e.g., Frey and Osborne (2017) conclude that 47% of
U.S. employment is at risk of automation. On the other hand, the optimistic
perspective views technology as an enabler that complements certain skills. In
this case, a worker is augmented by technology. The transition costs associated
with the labor substitution are, in this view, outweighed by the efficiency gains
from augmentation. The reason why the two contrasting views co-exist may stem
from the lack of high-quality data on the subject (Frank et al., 2019), which is
unsatisfactory for policy-makers as the implications are widely different. But
Acemoglu and Restrepo (2019b) argue that the debate centers around a false
dichotomy and offer an alternative framework for thinking about how technology
impacts tasks, productivity, and work through automation. The main idea
is that technology creates a displacement effect by replacing workers in tasks
that they previously performed, which reduces the demand for labor, wages, and
employment. But several countervailing forces could push against the displacement
effect, e.g., productivity effects, capital accumulation, deepening of automation,
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or most importantly, the creation of new tasks leading to a reinstatement effect.
Both Acemoglu and Restrepo (2019a) and Acemoglu and Restrepo (2020) build
on the idea of two major effects in opposite directions, i.e., the displacement
and reinforcement effects, and offer concrete empirical evidence. For instance,
Acemoglu and Restrepo (2020) use industrial robots to proxy technology and
estimate that one additional robot per thousand workers reduces wages by 0.42%
and the employment-to-population ratio by 0.2%-points. More generally, the
creation of new tasks does not happen automatically and has not received sufficient
focus, evidence suggests (Acemoglu and Restrepo, 2019c). One consequence is
rising inequality.

While many studies focus on the impact of technology on employment within
generations, there is very limited research addressing how these technologies impact
the opportunities between generations, conceptualized as social mobility. Many
studies in sociology and economics focus on social mobility, which captures the
association between the social position of an individual’s family in her upbringing
and the social position of that same individual when she is an adult. The
concept of moving between classes is precisely the idea behind status attainment,
which may be affected by achieved or ascribed factors (Blau and Duncan, 1967;
Boudon, 1974). The economic approach to social mobility started by modeling
social interactions within families (Becker, 1974; Becker and Tomes, 1976, 1979)
and later by measuring the correlation between lifetime earnings of fathers and
sons (Solon, 1992; Zimmerman, 1992). More recently, Chetty et al. (2014a)
operationalize upward mobility by defining it as the probability that a child
reaches the top fifth of the income distribution conditional on having parents in
the bottom fifth. Studies on the interplay between inequality and social mobility
suggest that inequality lowers mobility: Chetty et al. (2014a) show that social
mobility varies substantially across the US; Chetty et al. (2014b) find that children
entering the labor market today face the same mobility as children born in the
70s, whereas Chetty et al. (2017) find that the rates of absolute mobility have
fallen significantly for children born in the 80s compared to the 40s; Chetty and
Hendren (2018a), Chetty and Hendren (2018b), and Chetty et al. (2016) show
that the neighborhoods in which children grow up shape their income prospects.
Limited research, however, focuses on how technology impacts social mobility.

Specifically, there have been no empirical studies to our knowledge assessing if
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parent’s exposure to technology can act as a social leveler, enabling children from
disadvantaged backgrounds to overcome their circumstances. There are various
potential mechanisms at work here. When parents are exposed to technology
at the job, this is likely to be a topic of conversation over the dinner table and
children may inherit and build both interests and knowledge of technology. This
could either activate and reinforce certain cognitive abilities to a higher extent
or simply evolve to high-demand skills, e.g., programming skills. Related, when
parents are exposed to technology, they are more plausibly more likely to privately
invest in technologies, e.g., buying computers and other hardware. The children
of those parents naturally become more familiar with technology and understand
its fundamentals. The interests, knowledge, and understanding push children into
technology-related educations and industries, and as wages for STEM majors and
in the technology industry tend to be very competitive, this would be a channel
via which exposure to technology would increase social mobility. Additionally, if
internet access is almost universal, technology democratizes access to knowledge
by distributing it more evenly, which could shrink the gap in cultural capital
between social classes, and thus may lead to improved social mobility. Cultural
capital covers the accumulation of knowledge, behaviors, and skills that can be
used to reinforce class differences (Bourdieu, 1973, 1977, 1984).

Of the biggest barriers to study the effect of childhood exposure to technology
on social mobility is the lack of high-quality data on the subject (Frank et al., 2019)
and the lack of sufficiently long panels of technology exposure and parent-child
pairs. In essence, the childhood exposure to technology and the adulthood income
are observed over different time horizons and truly far in time from each other.
Another data challenge concerns the ability to identify causal effects, which is
hard due to unobserved family heterogeneity. It is, however, not until we overcome
the data barriers, we can truly address the consequences of technology between
generations, and understand the policy implications.

The contribution of this paper is to estimate the impact of technology on social
mobility, overcoming the aforementioned data challenges. Getting high-quality
measures of parent exposure to technology, we rely on the Danish micro data
containing occupational codes at the individual level per year dating back to the
early 80s, which we merge with detailed data from the Occupational Information
Network (O*NET) that provides measures of hundreds of occupational features.
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Our measure of occupational exposure to technology is the degree of working with
computers, that is, the degree to which using computers and computer systems
to program, write software, process information, etc. is required or needed to
perform the occupation. Using this measure, the occupations most exposed to
technology are computer systems engineers, computer research scientists, computer
programmers, and akin.

Dealing with the lack of sufficiently long panels of parent-child pairs, we adopt
and extend the multiple surrogates index framework by Athey et al. (2016) to
allow for continuous treatment exposures. That is, we show how to estimate
the average derivative of the continuous treatment on the long-term outcome via
intermediate variables called (statistical) surrogates. In our study, we observe the
exposure to technology at ages 5-15 and estimate the effects on income at ages
45-49 via income, education, job positions, and industries employed at ages 25-29.

To identify any causal effects, we adopt the design in Chetty and Hendren
(2018a) by exploiting variation in the age of children when their parents encounter
shifting technology exposures to estimate the effects of childhood exposure to
technology. The outcomes of children whose family experiences increased exposure
may change in proportion to the amount of time they spend growing up with that
exposure. Confounding is concerning if e.g., younger kids benefit from more family
resources over time. Moreover, because we rely on job shifts over time, we need to
control for other changes that happen simultaneously with changes in exposure to
technology when one parent shifts job. We achieve this by exploiting the richness
of the Danish micro data, where we obtain data on earnings, health proxies,
and labor-market experience together with demographic background variables.
Additionally, we parameterize occupations by using information from more than
240 occupational attributes from O*NET.

Our findings suggest that childhood exposure to technology significantly im-
pacts the opportunities in adulthood. Specifically, we estimate that a one standard
error increase in exposure to technology through the parents’ occupations at ages
5-15 leads to an expected rise of more than 2%-points in the income rank at ages
45-49. This has the potential to guide policy-makers; with technology exposure
being an enabler, the policy-makers may incentivize children from disadvantaged
backgrounds to acquire technology skills via interventions in the education system,
thereby improving opportunities for upward mobility. Because the technology
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exposure captures the use of computer and computer programs to write software,
the policy recommendation is to update the educational curriculum to include
more computer (software and hardware) classes.

This paper contributes to two strands of literature. First, our results on the
effect of childhood exposure to technology on the social mobility suggest the
early exposure to technology may act as a social leveler, enabling children from
disadvantaged backgrounds to overcome their circumstances. Second, we extend
the methodology of multiple surrogates index to allow for continuous treatments
and showcase an application.

The rest of this paper is structured as follows. In Section II, we present
our extension to the multiple surrogates index framework and provide formal
guarantees. Section III introduces the data, and Section IV presents the empirical
results, and we discuss the implications of the findings. Section V concludes.

II. Methodology

A. Setup

We consider two non-overlapping samples denoted the Experimental (E) sample
and the Observational (O) sample, respectively. We index units from the samples
by i ∈ [NE] and i ∈ [NO], respectively. For convenience, we view the data as one
single sample of size N = NE +NO equipped with a binary indicator Pi ∈ {E,O},
governing to which sample each unit i belongs. Each unit belongs uniquely to
a family j ∈ [J ] and Nj is the set of i-indices that belong to jth family with
|Nj| > 1. When needed, we double-index individuals by both i and j although
any particular individual, say i′, cannot belong to two families simultaneously.

For experimental units, we observe a single continuous treatment of interest,
W a

i ∈ R, for ages a ∈ [a1, a2], whereas for observational units, we observe a single
long-term outcome, Y a

i ∈ R, for ages a ∈ [c1, c2]. Thus, the treatment is not
observed in the observational sample and the long-term outcome is not observed
in the experimental sample. For all units, we observe intermediate outcomes called
surrogates, Sa

i ∈ RK , for ages a ∈ [b1, b2] and pre-treatment covariates Xi ∈ Rp

known not to be affected by the treatment. Note that a1 < a2 < b1 < b2 < c1 < c2

and that a2 − a1 could be different from b2 − b1 and likewise b2 − b1 could be
different from c2 − c1. In words, we do not necessarily observe the treatment,
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surrogates, and outcome for the same number of ages (and in particular not for
the exact same ages), and the timing of events is that treatment happens strictly
before surrogates which occur strictly before the long-term outcomes. Rather
than modeling ages separately, we consider averages over ages. Let superscript
[a, b] denote the average from age a to b, including both a and b, such that,
e.g., Z [a,b]

i = 1
b−a+1

∑b
t=a Z

t
i . For notational convenience, we henceforth drop the

subscript and simply use Wi := W
[a1,a2]
i , Si := S

[b1,b2]
i , and Yi := Y

[c1,c2]
i .

Following the potential outcomes framework or Rubin Causal Model (Rubin,
1974; Holland, 1986), we posit the existence of a set of potential outcomes Yi (w)
and surrogates Si (w) for w ∈ W ⊆ R. The Yi (w) is referred to as the individual-
level dose–response function, whereas µ (w) = E [Yi (w)] represents the average
dose–response function. The object of interest is the average derivative of the
dose-response function, namely

τ0 = E
[
∂Yi
∂Wi

|Pi = E

]
, (1)

Toy model illustrating family fixed effects For illustrative purposes, imagine
for a second that we had access to Yi and Wi in the same sample. In this case,
the simplest model to consider would be

Yi,j = δj + τWi,j + γXi,j + εi,j (2)

where δj is the family fixed effect, τ measures the effect of a one-unit increase in
the average treatment over the ages a1 to a2 on the average long-term outcome over
the ages c1 to c2, and εi,j is the error term. Ignoring the family fixed effects, we
would estimate (2) by least squares and let δj be absorbed into the new error term,
ϵi,j = δj + εi,j. Dealing with family fixed effects, however, we rely on differences
within families to cancel out δj. Let Zī,j := 1

|Nj |
∑

i∈Nj
Zi,j denote the family

average of a given random variable Zi,j and also denote the family-demeaned
variable by Z̃i,j = Zi,j − Zī,j. The family-demeaned version of Eq. (2) would be

Ỹi,j = τW̃i,j + γX̃i,j + ε̃i,j (3)

We do not, however, observe the treatment and the long-term outcome in the
same sample, for which reason we introduce the multiple surrogates index (MSI).
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B. The multiple surrogates index

For units in the experimental sample, let fWi|Xi
(w|x) for all w ∈ W denote the

assignment mechanism defined as the conditional probability density function of
each treatment level given the pre-treatment covariates Xi = x. To introduce the
MSI, we present our assumptions needed for our estimator to recover our object
of interest.

Assumption 1 (Overlap). For all x ∈ X , the conditional probability density
function of receiving any treatment w ∈ W is bounded away from zero:

fWi|Xi
(w|x) > 0 ∀w ∈ W , x ∈ X (4)

Assumption 2 (Unconfoundedness). The assignment mechanism is strongly
unconfounded such that for each unit i ∈ [N ]:

Wi ⊥⊥ (Yi (w) , Si (w)) |Xi, Pi = E ∀w ∈ W (5)

Assumptions 1–2 are standard in the causal inference literature and implies that
if Yi was observed for the experimental units, we could estimate the average causal
derivative of the treatment Wi on the outcome Yi by adjusting for pre-treatment
covariates, Xi.

Assumption 3 (Surrogacy). The treatment, Wi, and long-term outcome, Yi, are
conditionally independent:

Wi ⊥⊥ Yi|Si, Xi, Pi = E (6)

Assumption 3 defines the key property between Wi, Si, and Yi because it
assumes that the causal link between the treatment and long-term outcome is
fully captured by the surrogates. In Figure 1, we illustrate the implications of
Assumption 3. To the left, Figure 1a illustrates the assumption using a single
surrogate, where W cannot directly affect Y only indirectly through S. However,
X is allowed to affect both S and Y , but cannot be affected by W . To the right,
Figure 1b makes Assumption 3 more plausible by including multiple surrogates.
Note that the role of X is ignored in Figure 1b for illustratory purposes.
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(a) DAG with a single surrogate

W ... Y
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S1

(b) DAG with multiple surrogates

Figure 1: Illustrating the multiple surrogates index method

Notes: This figure shows

The last of the fundamental assumptions asserts the comparability of the
samples.

Assumption 4 (Comparability). The conditional distribution of the outcome Yi
is the same in both samples:

Yi|Si, Xi, Pi = O ∼ Yi|Si, Xi, Pi = E (7)

The simplest estimator A natural empirical analog of (1) is

τ̂ = EN

[
∂Yi
∂Wi

|Pi = E

]
, (8)

which we cannot directly compute because Yi is not observed in the experimental
sample. However, one may rewrite Eq. (8) as

EN

[
∂Yi
∂Wi

|Pi = E

]
= EN

[
∂Yi
∂Si

× ∂Si

∂Wi

|Pi = E

]
= EN

[
∂Yi
∂Si

|Pi = E

]
× EN

[
∂Si

∂Wi

|Pi = E

]
+ COVN

(
∂Yi
∂Si

,
∂Si

∂Wi

|Pi = E

)
= EN

[
∂Yi
∂Si

|Pi = O

]
× EN

[
∂Si

∂Wi

|Pi = E

]
+ COVN

(
∂Yi
∂Si

,
∂Si

∂Wi

|Pi = E

)
(9)
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The first equal sign is due to Assumption 3, where we estimate ∂Yi

∂Si
separately

from ∂Si

∂Wi
. The second equal sign uses the definition of covariance. Assumption

4 gives the the third equal sign because the sample E and O are comparable.
The covariance term is not estimable because Yi and Wi are not observed in the
same sample. But assuming that either Yi is homogeneous in Si or that Si is
homogeneous in Wi makes COV

(
∂Yi

∂Si
, ∂Si

∂Wi
|Pi = E

)
= 0. Under this assumption,

a simple estimator reads

τ̂ = EN

[
∂Yi
∂Si

|Pi = O

]
× EN

[
∂Si

∂Wi

|Pi = E

]
. (10)

Last, under Assumption 1–2, the estimator in (10) identifies the causal average
derivative.

Toy model illustrating the treatment effect We illustrate how to opera-
tionalize (10) under linear models. For the experimental sample, we consider a
linear model for each k ∈ [K] surrogate

S̃i,k = θkW̃i + γX̃i + ṽi,k, (11)

where we ignore the family subscript j for notational convenience. For the
observational sample, we consider a single linear model

Yi = β0 +
K∑
k=1

βkSi + δXi + vi. (12)

Combining the parameters from the experimental stage (θk for k ∈ [K]) with the
parameters from the observational stage (βk for k ∈ [K]), the treatment effect
analogously to Eq. (1) is given by

τ =
K∑
k=1

θk × βk (13)

Estimating the models in Eq. (11) and Eq. (12) by least squares and saving the
estimates θ̂k, β̂k for k ∈ [K], the empirical analog to (13) is τ̂ =

∑K
k=1 θ̂k × β̂k.
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Toy model illustrating the covariance assumption We illustrate when
the covariance between the two derivatives is zero by considering two simple
linear models in the experimental and observational stages in Eq. (14) and (15),
respectively,

Si = θ1Wi + θ2W
2
i + γXi + ψXiWi + ui (14)

Yi = β1Si + β2S
2
i + δXi + λXiSi + vi, (15)

where we have included higher-order terms of Wi and Si, respectively. Then, Eq.
(9) reads

EN

[
∂Yi
∂Si

|Pi = O

]
× EN

[
∂Si

∂Wi

|Pi = E

]
+ COVN

(
∂Yi
∂Si

,
∂Si

∂Wi

|Pi = E

)
= EN [β1 + 2β2Si + λXi|Pi = O]× EN [θ1 + 2θ2Wi + ψXi|Pi = E]

+ COVN [2β2Si + λXi, 2θ2Wi + ψXi|Pi = E] (16)

The covariance term in Eq. (16) equals zero if and only if either β2 = λ = 0

or θ2 = ψ = 0, meaning that either Wi has no higher-order effect on Si or Si

has no higher-order effect on Yi. In practice, this assumption is highly plausible
because it does allow one the models to be heterogeneous in its inputs. We would
often assume that Yi depends non-linearly on Si, which makes us assume that Si

depends linearly on Wi.

Our preferred estimator However, we can incorporate the estimation of
the covariance term by considering an alternative estimator, which acts as our
preferred choice. To introduce our preferred estimator, we define the following
conditional expectations

γ1 (s, x) = E [Yi|Si = s,Xi = x, Pi = O] , (17)

γ2 (w, x) = E [γ1|Wi = w,Xi = x, Pi = E] . (18)

We will argue that τ0 = E
[
∂γ2(Wi,Xi)

∂Wi

]
, which leads to our estimator of τ0 being

τ̂ = E
[
∂γ̂2 (Wi, Xi)

∂Wi

|Pi = E

]
. (19)
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Estimating Eq. (19), we follow the steps below.

1. Estimate Eq. (17) using the observational sample. Specifically, regress Yi
on b (Si, Xi) and denote the fitted regression by γ̂1 (w, x).

2. Generate predictions from γ̂1 (w, x) using the experimental data by plugging
in observed values of Wi and Xi into the estimated model.

3. Estimate Eq. (18) using the experimental sample. Specifically, regress the
predictions γ̂1 (Wi, Xi) on Wi and Xi.

4. Obtain τ̂ by differentiating γ̂2 (Wi, Xi) with respect to Wi using the experi-
mental sample.

C. Identification

Given Assumptions 1–4, we show that regression Yi onWi is equivalent to regressing
E [Yi|Si = s] on Wi, where we ignore Xi to economize on notation. That is, we
show that

argmin
τ1∈R

{
E
[
(Yi − τ1Wi)

2]} = argmin
τ2∈R

{
E
[
(E [Yi|Si]− τ2Wi)

2]} . (20)

Using the least squares solution, Eq. (20) rewrites to

COV (Yi,Wi)

V (Wi)
=

COV (E [Yi|Si] ,Wi)

V (Wi)
. (21)

To show that Eq. (21) holds, we rewrite its LHS to

COV (Yi,Wi)

V (Wi)
=

E [COV (Yi,Wi|Si)] + COV (E [Yi, Si] ,E [Wi, Si])

V (Wi)

=
COV (E [Yi, Si] ,E [Wi, Si])

V (Wi)
, (22)

where the first equal sign is due to the law of total covariance and the second to
Assumption 3. The final step is to rewrite E [Wi, Si] to Wi in the covariance term.
Let Wi = E [Wi|Si] + ui. First, COV (E [Wi, Si] , ui) = 0 because no part of ui
can be correlated with Si. Then, also by Assumption 3, COV (E [Yi, Si] , ui) = 0,
which gives Eq. (21) and then Eq. (20).
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Standard errors We construct standard errors of Eq. (19) using Generalized
Method of Moments (GMM). In the following, we let D = (Y, S,W,X) denote the
quadruple of random variables considered. We consider a system of two equations
with two parameters, θ = (θ1, θ2)

′, as in

Yi = S ′
iθ1 + vi

S ′
iθ1 = W ′

iθ2 + ui. (23)

Based on Eq. (23), the moment conditions read

g (Di, θ) =

[
g1 (Di, θ)

g2 (Di, θ)

]

=

[
S ′
i (Yi − S ′

iθ1)

W ′
i (S

′
iθ1 −W ′

iθ2)

]
, (24)

with orthogonality condition E [g (Di, θ)] = 0. The Jacobian then follows as

G = E [∇θ {g (Di, θ)}]

=

[
G11 G12

G21 G22

]

=

[
∂g1(Di,θ)

∂θ1

∂g1(Di,θ)
∂θ2

∂g1(Di,θ)
∂θ2

∂g2(Di,θ)
∂θ2

]

=

[
−S ′

iSi 0

W ′
iSi −W ′

iWi

]
, (25)

The influence function is then given by ψ (Di, θ) = G−1g (Di, θ), which equals . . .

ψ (θ) =

[
ψ1 (θ)

ψ2 (θ)

]

=

[
G−1

11 g1 (θ)

G−1
22 (g2 (θ) + (−G21)ψ1 (θ))

]
(26)
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Consequently, using influence functions, the asymptotic variance of θ̂ reads

V̂
(
θ̂
)
=

1

N

(
1

N

N∑
i=1

ψ
(
Di, θ̂

)
ψ
(
Di, θ̂

)′)
(27)

D. Simulation evidence

We demonstrate the performance of our preferred estimator through a Monte
Carlo simulation exercise. We use the data generating process (DGP) defined
below to create 10,000 different samples. In each sample, we calculate τ̂ by using
the estimator given in equation (19). The distribution of these 10,000 τ̂ values is
given in Figure 2.

Data-generating process We consider a single pre-treatment covariate X ∼
N(0, 1). Our treatment assignment is not random but a function of X and is
distributed normally, D ∼ .3X + N(0, 1). We consider two surrogate variables
S1 and S2. Both are normally distributed S1 ∼ 2D + XD + N(0, 1) and S2 ∼
3D +N(0, 1). Our outcome model is then

Y ∼ 4S1 +XS1 + S2 +N(0, 1) (28)

This means that our target τ0 is equal to

τ0 = E
[
∂Yi
∂Wi

|Pi = E

]
= E

[
∂

∂Wi

(4Si,1 +XiSi,1 + Si,2 + εi) |Pi = E

]
= E

[
∂

∂Wi

(4 (2Di +XiDi+ui) +Xi (2Di +XiDi+ui) + (3Di + vi) + εi) |Pi = E

]
= E

[
8 + 4Xi + 2Xi +X2

i + 3|Pi = E
]

= E
[
11 + 6Xi +X2

i |Pi = E
]

= 12 (29)
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Figure 2: Centered distribution of τ̂

Notes: This figure shows the distribution of τ̂ from a Monte Carlo simulation. This shows the
distribution of 10,000 estimates of τ̂ . Each τ̂ is estimated using a varying number of observations
from N = 100 to N = 1000.

III. Data

We start by describing the data unique to both the experimental and observational
sample, after which we describe the data common to the samples.

A. Experimental sample

The experimental sample is used to estimate the effects of childhood exposure to
technology on expected long-term income through several intermediate surrogates.
Individuals represent cohorts born between 1986 and 1990, leading to five cohorts.
We sample the exposure to technology at ages 5-15, which occurs in the years
1991-2005. For instance, the 1986 cohort is sampled between 1991-2001 (when
they are 5-15 years of age) to get the treatment exposure.

Treatment The treatment of interest is exposure to technology, which we
measure at the occupational level of the parents. By exposure to technology,
we mean the occupational degree of interacting with computers, which is a work
activity defined by “using computers and computer systems (including hardware
and software) to program, write software, set up functions, enter data, or process
information.”. Specifically, for each age of child i and for each parent, we observe
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the occupation of the parent and attach to it a measure of technology exposure,
namely the degree to which interacting with computers is required or needed to
perform the occupation.1 We use the maximum of the parents’ technology score
per age of the child.

Additional controls In addition to the (maximum) technology score of the
parents’ occupation in a given year, we observe all of the 244 O*NET attributes
at the occupational level as well as the commonly-used tasks measures (abstract,
manual, and routine tasks) by Autor et al. (2003, 2006); Acemoglu and Autor
(2011); Autor and Dorn (2013). We cannot, however, include all O*NET attributes
because the estimation would become too high-dimensional and overfitting would
be likely to occur. As an alternative, we include principal components of the
O*NET attributes. Specifically, we use the K-means clustering algorithm to
create ten clusters of O*NET attributes and locate the one cluster that contains
our treatment variable (the work activity capturing the degree of interacting with
computers). Then, we apply PCA on all the variables from the remaining nine
clusters and extract the first five principal components, which act as a medium-
dimensional control for occupational attributes. Further, we characterize the
financial situation of the parents by their total personal income, which contains
their labor and capital income. We observe the parents’ employment status and
report the amount of sickness benefits they have received from the government. We
follow Gustman and Steinmeier (2018) in including a large set of health variables
to deal with the measurement issues of health that are well-established in the
literature (see, e.g., Stern (1989); Bound (1991)). Specifically, we characterize
the parents’ health status by the number of hospitalizations, and the tariffs for
visits at the general practitioner, psychiatry, physiotherapy, and surgery, which
are summarized as total health expenses.

B. Observational sample

The observational sample is used to study the relationship between the long-term
outcome and the intermediate surrogates. Essentially, the observational sample

1Technically, we observe the Danish version of the International Standard Classification of
Occupations (ISCO) for each occupation, which we first crosswalk to the Standard Occupational
Classification (SOC) system and then we crosswalk this to O*NET codes.
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Table 1: Data overview

Treatment exposure Short-term outcomes Long-term outcomes

Sample Cohorts Years Ages Years Ages Years Ages

O 1961-1970 1986-1999 25-29 2006-2019 45-49
E 1986-1990 1991-2005 5-15 2011-2019 25-29

Notes: This table provides an overview of the samples used in this study. In particular, the
table displays what cohorts, years, and ages that sampled in both the observational and the
experimental sample, respectively.

Ages
5 10 15 25 29 45 49

Treatment
exposure

Intermediate
outcomes

Long-term
outcomes

E E, O O

Figure 3: Data overview

Notes: This figure shows the age range included in the observational sample (O) and the
experimental sample (E) governing the treatment exposure and the intermediate and long-term
outcomes.

allows us to learn the statistical relationship between outcomes at different stages
in life. Specifically, individuals come from cohorts born between 1961 to 1970,
leading to 10 cohorts. The primary outcome is the (average) income percentile
rank at 45-49 years of age, which we sample over the years 2006-2019. Specifically,
the 1961 cohort is sampled in 2006-2010 (when they are 45-49 years of age),
whereas the 1970 cohort is sampled in 2015-2019.

C. Common to the experimental and observational samples

We observe the surrogates in both samples when the individuals are 25-29 years
of age. For the experimental units, this happens in the years 2011-2019. For the
observational units, the surrogates are sampled between 1986-1999. We summarize
the samples in Table 1 and present a graphical overview in Figure 3.

For each individual, the surrogates include income at each age as well as the
average between the ages 25-29, the education level (i.e., lower secondary, upper
secondary, short-cycle tertiary, bachelor’s degree, or master’s degree) and field
(i.e., generic, humanities, health, business, engineering, or science) at age 29, the
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most common job position (i.e., outside the labor force or unemployed, employee,
self-employed, manager, or director) and industry (i.e., industries defined by The
North American Industry Classification System (NAICS)) between the ages 25-29,
and the average sickness benefits between the ages 25-29. In addition, we obtain
pre-treatment demographic covariates such as sex, citizenship, and origin. As
many algorithms require categorical data to be transformed into numerical data
before the data can be used as input, we use one-hot encoding to transform each
of the categorical variables.

D. Descriptive statistics

We continue this section by reporting some summary statistics. Specifically, we
report the frequency of the categorical variables in Table 2 and the mean of
the numerical variables in Table 3. For both tables, we distinguish between the
experimental and the observational sample. In Table 3, the surrogates are denoted
“Income (age 25)” to “Income (age 29)” as well “Income (age 25-29)” and also
“Sickness benefits (age 25-29)”. The long-term outcome variable is denoted “Income
(age 45-49)”. We include a few extra variables in the experimental sample (i.e.,
“Experience”, “Health expenses”, “Hospital admissions”, “Income”, and “Sickness
benefits”) to control for everything else that potentially happens with job shifts
and these variables are measured in the say way as the treatment variable. We do
not provide statistics for the principal components as they are standardized by
default.

In Table 2, the most notable differences between the two samples are the
educational level and field, where the younger cohorts (the experimental sample)
are better educated and more often educated (and employed) within health and
humanities compared to the older cohorts (the observational sample). For the
numerical variables in Table 3, the differences appear negligible. Overall, as we will
explore in the next subsection, the differences have little to no statistical impact
as only a very limited number of individuals are statistical highly likely (more
than 90%) to belong to a particular sample conditional on the surrogates and
pre-treatment covariates, for which reason we conclude that there is a reasonable
overlap between the samples.
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Table 2: Descriptive statistics of categorical variables

Experimental sample Observational sample
Variable Category

Cohort 1961 8.6%
1962 8.9%
1963 10.1%
1964 11.0%
1965 12.0%
1966 12.4%
1967 10.9%
1968 9.2%
1969 8.4%
1970 8.5%
1986 21.4%
1987 21.0%
1988 20.0%
1989 18.7%
1990 18.8%

Sex Female 48.5% 48.2%
Male 51.5% 51.8%

Origin Danish 91.7% 98.5%
non-Danish 8.3% 1.5%

Citizenship Danish 97.9% 99.3%
non-Danish 2.1% 0.7%

Education level Lower secondary 13.7% 24.6%
Upper secondary 38.9% 52.3%
Short-cycle tertiary 5.1% 4.5%
Bachelor 24.2% 13.1%
Master 18.1% 5.6%

Education field Generic 21.5% 34.1%
Humanities 18.6% 9.1%
Health 18.0% 8.5%
Business 17.7% 21.9%
Engineering 17.7% 22.2%
Science 6.4% 4.2%

Industry Agriculture 1.3% 3.2%
Construction 7.1% 6.5%
Finance 13.2% 10.3%
Health 23.0% 15.1%
Humanities 10.8% 7.7%
Manufacturing 8.0% 23.2%
Public 11.7% 10.8%
Trade 25.0% 23.1%

Job position Inactive 15.7% 10.2%
Employee 58.6% 72.6%
Self-employed 2.1% 3.0%
Manager 23.0% 14.1%
Director 0.7% 0.2%

Notes: This table reports the frequencies of the categorical variables for both the experimental
and observational sample.

E. Ensuring overlap between samples

Assumption 4 states that the experimental and observational samples are compa-
rable in terms of the conditional distribution of the outcome Yi. This assumption
is untestable because Yi is not observed in the experimental sample. But as an
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Table 3: Descriptive statistics of numerical variables

Experimental sample Observational sample
Variable

Experience 0.82
Health expenses 228.45
Hospital admissions 0.15
Income 66600.15
Income (age 25) 31076.07 36040.45
Income (age 26) 34277.33 38193.09
Income (age 27) 38073.63 40210.05
Income (age 28) 41753.91 42146.73
Income (age 29) 45254.06 43969.96
Income (age 25-29) 38100.52 40126.49
Income (age 45-49) 421538.70
Sickness benefits 1002.57
Sickness benefits (age 25-29) 793.90 874.73
Treatment 0.20

Notes: This table reports the mean of the numerical variables for both the experimental and
observational sample.

robustness assessment and sample selection strategy, we restrict our attention to
individuals that statistically could belong to either sample in terms of propensity
scores.2 Specifically, define the probability of belonging to the observational
sample by ρi = Pr (Pi = O|Si, Xi). We estimate ρi via a (regularized) logistic
regression by regressing the indicator 1 {Pi = O} on b (Si, Xi), where b (·) is a
high-dimensional dictionary and we use the fitted values ρ̂i as an estimate of the
propensity score. The distribution of the estimated propensity scores follow from
Figure 4. We keep individuals in the experimental sample if ρ̂i > ξ and individuals
in the observational samples if ρ̂i < 1 − ξ, where ξ acts as a propensity score
threshold and is fixed at 0.1. As a consequence of extreme propensity scores, we
remove 1697 (0.84%) and 2017 individuals (0.48%) from the experimental and
observational sample, respectively. Therefore, we emphasize that this sample
selection strategy has almost no effect on the sample as a very limited number
of individuals are removed due to extreme propensity scores. This ultimately
supports Assumption 4.

2Traditionally, the propensity score is the probability of belonging to the treated sample as
opposed to the control sample in binary treatment studies. We slightly misuse the terminology
and use propensity scores as the probability of belonging to the observational sample as opposed
to the experimental sample.
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Figure 4: Distribution of propensity score estimates

Notes: This figure shows the distribution of propensity scores estimated by running a regularized
logistic regression of 1 {Pi = O} on b (Si, Xi), where b (·) is a dictionary.

IV. Empirical Analysis

A. The benefits of multiple surrogates

The idea of using a single intermediate variable as a surrogate to estimate long-term
effects is not new and dates back to Prentice (1989) and has been studied by, e.g.,
Begg and Leung (2000); Frangakis and Rubin (2002). We will, however, argue that
the use of multiple surrogates is strongly preferred whenever multiple surrogates
are available to the researcher, which is also emphasized by Athey et al. (2016).
First, the interpretation of the marginal effect of any single surrogate depends
on whether the effect is unconditional or conditional. In our application, we use
income at ages 25-29 and the educational attainment at age 29 as surrogates,
but income at younger ages plays a very different role in explaining income at
older ages when income is conditional on education and when it is not. Ceteris
paribus, higher income at younger ages should lead to higher income at older
ages but highly-educated individuals may have low earnings in their late 20s
although they tend to receive high earnings in their late 40s. Second, the use of
multiple surrogates rather than one makes Assumption 3 much more likely to hold
empirically because the treatment of interest has more channels to (indirectly)
affect the long-term outcome variable. Third, the usefulness of the surrogates
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Figure 5: Out-of-sample R2 for surrogates separately and combined

Notes: This figure shows the out-of-sample R2 for surrogates separately and combined evaluated
on 120,851 test individuals not used to estimate the model parameters. The surrogates are
ranked by the individual predictive ability. The last column to the right represents the estimation
using all surrogates jointly.

index framework depends strongly on the ability of the surrogates to precisely
predict the long-term outcome. Mathematically, the lower the generalization
error, E [L (Y, γ1 (S,X))], the more useful the framework is, where L (·, ·) is some
loss function and the expectation is taken over an independent test sample.
Fortunately, we can assess the predictability of the long-term outcome empirically
by each surrogate and jointly. Specifically, we split the observational sample
into a training and a test sample using a 75%/25% split, leading to 362,550 and
120,851 individuals in each sample, respectively. Then, for each surrogate j ∈ [K],
we estimate γ1,j (s, x) = E [Yi|Si,k = s,Xi = x, Pi = O] using least squares and
compute the out-of-sample R2 using the test sample as

1−
∑

i∈Dtest
(Yi − γ̂1,j (Si,k, Xi))

2∑
i∈Dtest

(
Yi − Y Dtrain

)2 , (30)

where Dtrain and Dtest are sets containing the indices of the training and test
sample, respectively, and ȲDtrain = |Dtrain|−1∑

i∈Dtrain
Yi is the average of the long-

term outcome using the training indices. In Figure 5, we plot the individual and
cumulative out-of-sample R2 together with the out-of-sample R2 stemming from
using all the surrogates jointly.
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Figure 6: Distribution of the treatment exposure

Notes: This figure shows the treatment of the childhood exposure to technology averaged of the
aged 5 to 15. The LHS (Figure 6a) shows the raw treatment exposure, where the RHS (Figure
6b) shows the family-demeaned analog, which is the one used in all regressions.

Figure 5 suggests that using all the available surrogates strongly outperforms
any single (or cumulative) surrogate in terms of predicting the long-term outcome.
In fact, the highest out-of-sample R2 from any single surrogate, which is obtained
using the education level, only reaches 16.4% compared to 29.7% using all surro-
gates jointly. As also pointed out by Athey et al. (2016), this ultimately leads to
much lower standard errors when estimating the average effect of the treatment
on the long-run outcome.

B. Assessing the treatment

Identification of the effect of exposure to technology ultimately depends on the
variation in parental occupation and job shifts over time as we remove family fixed
effects. To assess the variation in the treatment exposure, we show two histograms
in Figure 6, where Figure 6a shows the distribution of the raw treatment exposure
and Figure 6b shows the distribution of the family-demeaned treatment exposure,
that is, the actual treatment exposure used in the estimation.

As seen from Figure 6b, roughly 70% of the individuals are only mildly if at
all exposed to variation in the treatment exposure within the family because their
parents barely change jobs over the years in which we measure the treatment
(that is, over the ages from 5 to 15 of the child). This means that identification
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comes from the remaining 30% of the sample, which corresponds to approximately
55,700 individuals. We do, however, believe that this high number of individuals
is still sufficient to estimate the effects accurately.

C. Intermediate effects

Although our preferred estimator does not implicitly model the relationship
between the treatment exposure and each of the surrogates, we may still assess
the intermediate effect of the treatment on the surrogates following the procedure
outlined for the simplest estimator, which turns out to also advocate for the
use of multiple surrogates. Essentially, we regress each (standardized) surrogate
on the treatment, pretreatment variables, and the other occupational control
variables and show the coefficient on the treatment variable in Figure 7 with
confidence intervals. This approach suggests that childhood exposure to technology
at ages 5-15 has a positive impact on the income, educational attainment, and job
position in the late 20s. On the contrary, childhood exposure to technology tend
to discourage working in the humanities industry and improve health conditions
by reducing the amount of sickness benefits received in the late 20s. In terms of
statistical significance, these effects are, however, not strong individually and only
a few of the effects are significant at conventional levels. This further urges the
use of multiple surrogates.

D. Long-term effects

Average effects Using our preferred estimator in Eq. (19), we will next estimate
the long-term effects of childhood exposure to technology on income in the late
40s via surrogates from the late 20s. We consider five different specifications
that involve different control variables. The baseline specification has no control
variables and Eq. (18) is therefore simply a regression of the predicted long-term
income rank on childhood exposure to technology. The second specification adds
a few demographic variables such as sex, citizenship, and origin as controls. The
third specification adds further labor-market experience and three proxies for
health as controls. To control for all other changes that happen with job shifts, the
fourth specification adds parental income and the first three principal components
of the O*NET occupation attributes. Finally, the fifth specification considers
additionally two principal components of the O*NET occupation attributes,
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Figure 7: Effects of the treatment on each surrogate

Notes: This figure shows the average effect (as measured by the standardized regression
coefficients) of childhood exposure to technology on each of the surrogates. The surrogates are
ranked by the effects from most negative to most positive. Negative effects are colored by red,
whereas positive effects are colored by blue. Confidence intervals are shown by the black error
bars.

that is, the fourth and fifth. Adding more principal components to control for
occupational shifts do not significantly alter the results.3 The regression results
from all specifications follow from Table 4. All standard errors are robust to
cluster correlation at the family level.

The three most simple specifications (columns 1-3 in Table 4) suggest an average
effect of increasing childhood exposure to technology on the income rank in the
late 40s of slightly more than 1%-point, which is statistically significant at 10%
using cluster-robust standard errors. The resulting adjusted R2 is slightly higher
than 7% except for the baseline specification, in which it is de facto zero. These
specifications, however, do not sufficiently control for all other changes that happen
when parents shift jobs. Specifically, the potential effects coming from changes in
income, work activities, etc. are all attributed to changes in technology exposure
in the basic specifications. In contrast, the more comprehensive specifications
in columns 4-5 in Table 4 control for income and occupational attributes that
change with job shifts. These specifications suggest an average treatment effect of
approximately 2%-points, which is significant at the 5% level using our preferred

3Additional tables are available upon request.
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Table 4: Main regression results

Regression #1 Regression #2 Regression #3 Regression #4 Regression #5

Treatment 0.0118∗ 0.0129∗ 0.0111 0.0175∗ 0.0216∗∗

(0.007) (0.0068) (0.0068) (0.0092) (0.0103)
Sex (male) 0.0696∗∗∗ 0.0696∗∗∗ 0.0696∗∗∗ 0.0695∗∗∗

(0.0016) (0.0016) (0.0016) (0.0016)
Origin (non-Danish) −0.0174 −0.0065 0.0047 0.0047

(0.0307) (0.031) (0.0328) (0.0329)
Citizenship (non-Danish) −0.2618∗∗∗ −0.2616∗∗∗ −0.2623∗∗∗ −0.2625∗∗∗

(0.0079) (0.0079) (0.008) (0.008)
Experience 0.0558∗∗∗ 0.0042 0.0039

(0.0138) (0.0301) (0.0301)
Health expenses −0.0 −0.0 −0.0

(0.0) (0.0) (0.0)
Hospital admissions −0.0046 −0.0075 −0.0075

(0.0079) (0.0082) (0.0081)
Sickness benefits −0.0 0.0 0.0

(0.0) (0.0) (0.0)
Income 0.0∗∗ 0.0∗∗

(0.0) (0.0)
PCA1 −0.001 −0.0011

(0.001) (0.001)
PCA2 −0.0011 −0.0013∗

(0.0008) (0.0008)
PCA3 −0.0034∗∗ −0.0036∗∗

(0.0014) (0.0014)
PCA4 0.0013

(0.0015)
PCA5 0.0018

(0.0014)
Adj. R2 0.000 0.073 0.074 0.107 0.107
SSE 778.4 721.2 720.8 695.3 695.3
SSR 0.1 57.2 57.6 83.1 83.1
SST 778.4 778.4 778.4 778.4 778.4
N 139,183 139,183 139,183 139,183 139,183

Notes: This table shows the results from regressing the (predicted) income rank at ages 45 to 49
(the long-term outcome) on childhood exposure to technology (the treatment exposure) and
additional control variables using five specifications that each represent a column. Column (1)
represents the baseline specification with no controls, whereas column (5) represents the full
specification with demographic variables, labor-market experience, health proxies, income, and
occupational attributes. Columns (2)-(4) represent the specifications in between the baseline
and full specification as detailed in the index column. Coefficients estimates are shown in the top
of each cell alongside with standard errors in parentheses in the bottom. Superscripts ***, **,
and * indicate statistical significance based on a (two-sided) t-test using cluster-robust standard
errors at the family level at significance levels 1%, 5%, and 10%, respectively.

specifications with five principal components that represent the rich occupational
data from O*NET of 244 occupational attributes. The adjusted R2 is also higher at
almost 11%. Adding further principal components does not change the estimated
effects significantly. Altogether, Table 4 suggests that increasing the childhood
exposure to technology at ages 5-15 by one standard error through parents shifting
to jobs that involve a larger degree of interacting with computers will lead to the
children rising approximately 2%-points in the income distribution when they
reach their late 40s.
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Figure 8: Effects of the treatment on the long-term outcome

Notes: This figure shows the estimated monetary effect on income in 2015 USD of childhood
exposure to technology by income decile.

Heterogeneous effects Our finding that increased exposure to technology can
positively affect children’s opportunities to climb the income ladder by 2%-points
is in itself a very heterogeneous effect because the monetary effect varies greatly
with the income rank. To assess the effect heterogeneity, we compute the average
monetary effect by decile of the income distribution and show the results in
Figure 8. Note that we leave out the highest income decile because the effects
are extremely large and distort the illustration, which follows from the fact that
income in our sample follows a log-normal distribution. We provide the same
figure including the tenth decile in Figure A.1 in Appendix A.

Figure 8 shows that the largest effects are to be expected at the tails of the
income distribution, i.e., for the low- and high-earners. This makes sense if income
follows a non-uniform distribution with most of the mass at the center, which is
the case for our sample. Specifically, a 2%-points increase in income rank at the
bottom of the income distribution (the first decile) translates to at 48% increase
in income, which then corresponds to approximately $7,500 per year. Considering
the median income rank, the estimated effect translates into slightly less than 2%
increase in income, corresponding to around $1,000 extra per year. For individuals
at the ninth decile, the increase in income is estimated to be just shy of 6%, which
would be extra $5,200 per year. At the very top of the income distribution (not
shown in Figure 8 but in Figure A.1), the increase in income is estimated to
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approximate 32%, which would bring in additionally $49,600 a year.

V. Conclusion

Technology affects every aspect of our economies and social welfare systems.
Evidence suggests that the adoption of technologies currently happens at a
faster pace that the creation of new tasks, and thereby the displacement effects
dominates the reinstatement effects (Acemoglu and Restrepo, 2019a,b,c, 2020).
One consequence is rising inequality (Acemoglu and Restrepo, 2022). However, to
the best of our knowledge, there are no studies focusing on the impact of technology
between generations. Specifically, one may hypothesize that parent’s exposure
to technology can act as a social leveler, enabling children from disadvantaged
backgrounds to overcome their circumstances. This could materialize if parents
who are highly exposed to technology pass on their interests and knowledge to their
children who then develop high-demand skills (e.g., programming) or get employed
in the high-paying technology sector. But lack of high-quality data on the subject
(Frank et al., 2019) and the lack of sufficiently long panels of technology exposure
and parent-child pairs create large barriers to study the effects of childhood
exposure to technology on social mobility in terms of rising income rank. The
topic, however, remains of the highest importance to policy-makers as a tool to
develop the educational system of tomorrow.

This paper studies the impact of childhood exposure to technology at ages 5-15
on the long-term income rank at age 45-49. We exploit the Danish micro data
that contain occupational codes and merge those with the detailed occupational
data from O*NET. As exposure to technology, we use the degree to which
using computers (hardware and software) is required to perform an occupation,
which is most pronounced for computer systems engineers, computer research
scientists, computer programmers, and akin. We adopt the multiple surrogates
index framework by Athey et al. (2016) to overcome the challenge of having
sufficiently long panels of parent-child pairs by modeling the effect of childhood
exposure on adulthood income through intermediate surrogates, such as income,
education, and labor-market experience at ages 25-29. Further, we extend the
framework to allow for continuous treatments. Identifying the causal effects of
technology, we follow Chetty and Hendren (2018a) in exploiting the variation in
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the age of children when their parents encounter shifting technology exposures,
which then removes unobserved family heterogeneity. Further, as much more
than exposure to technology changes with job shifts, we control for the financial
situation, health conditions, and information from more than 240 occupational
attributes.

Our findings indicate the individuals may benefits greatly in their adulthood
from childhood exposure to technology. In fact, we estimate that a one standard
error increase in the exposure to technology rises the income rank of the indi-
vidual by 2%-points. The immediate policy recommendation that follows is to
increase exposure to technology by expanding the computer-based activities in the
educational curriculum, which would help children to acquire technology skills.
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A. Appendix

In this appendix, we provide additional details to those given in Section IV on the
application. This appendix is meant as a supplement and is not self-contained
without the main text.
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Figure A.1: Effects of the treatment on the long-term outcome

Notes: This figure shows the estimated monetary effect on income in 2015 USD of childhood
exposure to technology by income decile.
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