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Abstract

This paper identifies an important bias — termed dynamic bias — in fixed effects panel

estimators that arises when dynamic feedback is ignored in the estimating equation. Dynamic

feedback occurs if past outcomes impact current outcomes, a feature of many settings ranging

from economic growth to agricultural and labor markets. When estimating equations omit past

outcomes, dynamic bias can lead to significantly inaccurate treatment effect estimates, even with

randomly assigned treatments. This dynamic bias in simulations is larger than Nickell bias. I

show that dynamic bias stems from the estimation of fixed effects, as their estimation generates

confounding in the data. To recover consistent treatment effects, I develop a flexible estimator

that provides fixed-T bias correction. I apply this approach to study the impact of temperature

shocks on GDP, a canonical example where economic theory points to an important feedback

from past to future outcomes. Accounting for dynamic bias lowers the estimated effects of higher

yearly temperatures on GDP growth by 10% and GDP levels by 120%.
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1 Introduction

Treatment effects are often estimated with fixed effects panel models [Currie et al., 2020]. These

models accounted for 19% of the empirical articles published in the American Economic Review

from 2010 to 2012 [Chaisemartin and d’Haultfoeuille, 2020].1 It is common for these fixed-effects

models to be static, meaning the models do not control for past outcomes and, therefore, do not

account for dynamics. Static models are frequently used even when economic theory suggests a

dynamic relationship between past and current outcomes. For example, past agricultural yields

impact future yields through soil health and market demand [Griliches, 1963], human capital for-

mation is dynamic [Cunha and Heckman, 2007], past labor market states impacts future states

[Blanchard and Summers, 1988], past GDP impacts current GDP [Solow, 1956], and migration

flows are functions of historical migration chains [Massey et al., 1993]. Despite this theoretical

expectation, empirical papers studying these outcomes often run fixed effects analysis without

controlling for past outcomes.2

One reason why researchers often use static models is because they are concerned that adding past

outcomes as controls can cause estimation problems. This concern is rooted in the understanding

that panel models with both fixed effects and past outcomes are subject to Nickell bias [Nickell,

1981]. Nickell bias arises from the estimation of fixed effects, in particular the failure of strict

exogeneity conditions when dynamics are present, leading to biased estimates. Another reason why

researchers use static models is because they think it is unnecessary to control for past outcomes

when treatment is random. For example, if treatment is an exogenous temperature shock, it is

commonly assumed that treatment is random conditional on fixed effects. Consequently, researchers

believe they can obtain unbiased treatment effect estimates without controlling for past outcomes.

Random treatment assignment ensures that excluding past outcomes does not lead to omitted

variable bias. However, this paper shows that a different bias arises due to the omission of these

dynamics and the fixed effect estimation.
1Fixed effects panel models are especially important in economic contexts where randomizing treatment is not

feasible. For example, in environmental economics, it is impossible to randomize exposure to floods or temperature
shocks to estimate their effects. Instead, researchers use observational data and typically assume that, conditional
on location, the treatment is random.

2Examples include Annan and Schlenker [2015], Burke et al. [2015], Cho [2017], Jessoe et al. [2018], Drabo and
Mbaye [2015], Mahajan and Yang [2020], Missirian and Schlenker [2017], Graff Zivin et al. [2018] Garg et al. [2020].
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The main contribution of this paper is two-fold. First, I identify “dynamic bias”, a bias that arises

when static fixed effects panel models are used in settings with dynamics in outcomes. Dynamic

bias occurs because past treatment is related to past outcomes through the outcome equation.

Therefore, de-meaning or differencing to account for fixed effects generates confounding. This

generated confounding leads to biased treatment effect estimates even if the treatment is random.

Treatment effects are even more biased if treatment is related to past outcomes and therefore

endogenous. A contribution of this paper is to explicitly characterize the resulting dynamic bias.

Using analytical derivations, simulations, and applied examples, I demonstrate that dynamic bias

is often substantial. The dynamic bias, caused by omitting past outcomes from the model, is often

much larger than the Nickell bias caused by including past outcomes in the model.3 Therefore,

when researchers avoid controlling for past outcomes because they are worried about introducing

bias, they may in fact be making the bias on their treatment effect estimates larger.

The second contribution of the paper is to develop a new estimator that corrects for both dynamic

bias and Nickell bias, which works even when the number of time periods T is fixed. I create a novel

bias correction, “dynamic biases correction” (DBC), by deriving a formula for the asymptotic4 bias

term following Kiviet [1995]. The explicit formula can be derived because, given the model, we

know exactly how the Nickell bias is generated: the errors become correlated with regressors due to

the demeaning required for fixed effects estimation. Therefore, I analytically derive an expression

for the demeaned errors and use this expression to calculate how the demeaned errors correlate

with the demeaned regressors, leading to an explicit formula for the bias. The bias correction is

achieved by subtracting an estimate of the bias from the original estimated coefficients.

The DBC correction for treatment effects is the first analytic bias correction that accommodates

endogenous treatment related to past outcomes. Allowing for endogenous treatment is important

in many economic settings because selection into treatment is often a function of past outcomes.5

My correction also works when the treatment is exogenous, e.g. randomly assigned. Additionally,
3In simulations, no matter how correlated past outcomes are with current outcomes, dynamic bias is larger than

Nickell bias.
4Under asymptotics where the number units N Ñ 8 but number of time periods T is fixed.
5Marx et al. [2022] and Ghanem et al. [2022] show how many economic models lead to treatment selection that

depends on past outcomes. For example, selection into environmental policy treatment is often a function of past
environmental conditions. Policies that target air pollution in particular areas are implemented because of past
pollution rates [Chay and Greenstone, 2005]. As another example, regional deforestation protection in Brazil is based
on past deforestation in the region [Harding et al., 2021, Assunção et al., 2023].
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my correction is the first analytical correction not to impose homogeneity in treatment effects,

even when treatment is endogenous. A large econometrics literature highlights problems that arise

when homogeneity in treatment effects is assumed incorrectly – and how important it is to allow

for treatment effects to vary depending on the treatment group in panel data.6

The exact bias correction approach has some appealing characteristics in comparison to alternative

corrections, which are based on instrumental variables [Holtz-Eakin et al., 1988, Arellano and Bond,

1991]. The instrumental variable methods are based on using further outcome lags as instruments

for outcome lags. The correct choice of instrument is often unclear and can lead to problems caused

by weak instruments.7 In simulations, I find that my analytical solution keeps standard errors as

small as the original linear regressions and maintains proper coverage, as compared to instrumental

variable methods which lead to larger standard errors.

The biases and proposed estimator are illustrated through Monte Carlo simulations and empirical

replications. I generate simulation data where treatment is a function of past outomes, as well as

data where treatment is random conditional on fixed effects. Even in the simulation with random

treatment, treatment effect estimates from models omitting past outcomes are biased significantly

more than models that control for past outcomes. In Monte Carlo simulations, the DBC estimator

is unbiased and has smaller standard errors as compared to the Arellano-Bond-based alternative.

To validate my results with real data, I use data from Dell et al. [2012]. This paper studies the

“contemporary causal effect of temperature on the development process” by using a yearly panel

of countries with GDP and temperature information [Dell et al., 2012]. The treatment variable

of interest is temperature, which is taken to be random, conditional on the country. Controlling

for past outcomes significantly changes the results both when the outcome is GDP growth (10%

change) and GDP levels (120% change).89

The rest of the paper proceeds as follows. Section 1.1 discusses related work in more detail. I
6Discussed in Sun and Abraham [2020], Callaway and Sant’Anna [2021], Goodman-Bacon [2021], Chaisemartin

and d’Haultfoeuille [2024] .
7Problems caused by weak instruments are discussed by Andrews et al. [2019], Mikusheva [2021], Mikusheva and

Sun [2024].
8The p-value for the GDP growth result is .06, so it is significant at the 10% level while the GDP level result is

significant at the 5% level.
9Both GDP growth and levels are used as outcomes in the literature that studies the effect of temperature on

economic outcomes [Newell et al., 2021, Nath et al., 2024].
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provide empirical motivation and an overview of the biases discussed in this paper in Section 2.

Section 3 presents theoretical results. Section 4 introduces the DBC estimator of treatment effects.

Section 5 conducts a simulation study to illustrate the asymptotic properties of the estimators

I propose. Section 6 provides an empirical example illustrating how correcting for dynamic bias

impacts treatment effect estimation. Section 7 concludes.

1.1 Literature review

This paper contributes to the literature on dynamic panel estimation with fixed effects. This liter-

ature has a long history, beginning with Griliches [1967]10 and other researchers, who investigated

how dynamics in outcomes lead to violations of the strict exogeneity of errors assumption, which

is necessary for unbiased ordinary least square error (OLS) coefficient estimation including fixed

effect estimation. Nickell [1981] derived an explicit formula for the bias of OLS parameters when

past outcomes and unit fixed effects are included in the regression, assuming all other regressors

are strictly exogenous. Nickell bias can be thought of as a specific type of incidental parameter bias

[Neyman and Scott, 1948].11 The primary focus of the literature has been on investigating how

including past outcomes in the regression leads to bias, particularly with regard to the coefficient

on the past outcomes. However, in applied work the statistical object of interest is often the treat-

ment effect estimate, rather than the dynamic process itself, and do not include past outcomes as

controls. This paper is therefore uniquely contributing to the literature by focusing on the coeffi-

cient on the treatment effect rather than the coefficient on the past outcome, which is treated as

a nuisance parameter. It is also the first to focus on parameter estimation when the past outcome

is not included in the OLS regression model. By studying treatment effects in models that exclude

past outcomes, I am able to characterize dynamic bias. This characterization reveals that dynamic

bias can be much larger than the previously studied Nickell bias. In all simulation specifications,

dynamic bias is larger than Nickell bias, even when treatment is random.

To correct for dynamic bias, I provide a bias-corrected (DBC) estimator. Given that Nickell bias
10Griliches [1967] discussed how time series regression parameters are estimated with bias when intercepts are

included. This phenomenon was also studied by Nerlove [1971].
11Incidental parameter bias arises in fixed effects panel models with the number of time periods T is small relative

to the number of units N . This bias occurs because each unit fixed effect is estimated only using a few observations,
leading to biased estimates of the fixed effects.
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is often much smaller than dynamic bias, my bias correction procedure calls for first controlling

for past outcomes, and then correcting the resulting Nickell bias. In settings with fixed T , there

are two main approaches for dealing with Nickell bias. The first and most well-known approach

is that of Holtz-Eakin et al. [1988] and Arellano and Bond [1991], which is based on instrumental

variables. The second approach is an analytical method that I build upon, following the works of

Kiviet [1995], Juodis et al. [2015], and Breitung et al. [2022].

The instrumental variables (IV) approach is based on using past outcomes as instruments for en-

dogenous regressors. Its goal is to use further lags of the outcomes, or treatments, as instruments

for current differenced outcomes and treatments. These instruments may be weak, and the more

time periods available the more possible instruments, which can lead to problems associated with

many weak instruments [Mikusheva and Sun, 2024].12 In practice, estimates obtained using in-

strumental variables are quite sensitive to the choice of instruments, making instrument selection

a daunting task for applied researchers.13

Instead of using instrumental variables, I follow Kiviet [1995] and analytically correct the bias.

The analytical bias correction avoids problems associated with instruments while still providing a

correction in the fixed-T setting. The downside of the analytical bias correction method is that

it requires analytical work that is outcome and treatment model-specific, which IV methods do

not. The past analytical bias literature provided corrections for a specific class of models. Both

Kiviet [1995] and Breitung et al. [2022] focus on corrections for models with endogeneity from

past outcomes and do not accommodate endogenous treatment. Breitung et al. [2022] extends the

work of Kiviet [1995] by allowing for multiple lags of the outcome variable and for incorporating

the bias correction into a GMM framework. I build off Breitung et al. [2022] and also use a

Generalized method of moments (GMM) framework for the DBC. Instead of GMM, Juodis et al.

[2015] provides an iterative analytical bias correction for Vector Autoregressive (VAR) systems.

VAR models also do not accommodate endogenous treatments; endogenous treatments in time

period t impact outcomes in time period t. Therefore to allow for endogenous treatments I extend
12The weak instrument issue is partially addressed by Blundell and Bond [1998], who proposed a system GMM

solution by including both first differences and levels of past outcomes as instruments. However, this approach still
suffers from the weak instrument problem when the variance of individual effects is greater than the variance of the
errors (see Bun and Windmeijer [2010]).

13See Section (6.1.2) for application to Dell et al. [2012]. Depending on the instruments used, point estimates for
both treatment and past outcomes flip signs.
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the analytical bias corrections to structural VARs (SVARs). This extension requires that I make

a structural assumption to avoid simultaneity problems: treatment in a time period t impacts the

outcome in time period t, but the outcome in time period t doesn’t impact treatment in time period

t. I allow past outcomes, like those from time period t´1, to impact treatment in time period t. This

paper is the first to provide an analytical correction for settings with endogenous treatments. This

analytical correction is also the first to allow for interaction terms between endogenous variables

and exogenous variables, allowing treatment effects to vary based on observable characteristics.

I work in the fixed-T setting to help applied researchers sidestep the issue of having to guess

whether they have “enough” time periods for a correction that yields valid inference. Although

asymptotic normality is only guaranteed in a fixed-T setting with instrumental or analytical bias

approaches, there are other approaches for de-biasing Nickell bias as long as T is allowed to grow.

One correction for Nickell bias in the large T asymptotic setting is the jackknife approach (e.g.,

Dhaene and Jochmans [2015]), which involves taking samples of the panel data with different

lengths of T to calculate the bias. This hands-off approach is easy to implement but results

in larger standard errors than the analytical method [Fernández-Val and Weidner, 2016]. Fixed-T

analytical corrections work with flexible linear models but do not allow for non-linear non-separable

models (e.g., logit models). Marginal effects are not identified in fixed-T settings in non-separable

models [Chernozhukov et al., 2013]. Many applied papers in environmental economics seek to

estimate treatment effects, a type of marginal effect, so I impose flexible linearity to allow for their

estimation.

This paper demonstrates the importance of explicitly including past outcomes in the regression

model for panel data settings where there is a relationship between past and current outcomes,14

Currently, applied researchers often employ various alternative methods to account for outcome

history without incorporating past outcomes into their models. Common approaches include adding

time trends to the models or employing factor model-based methods.15 However, these methods do

not control for dynamics in outcomes—that is, the influence of past outcomes on current outcomes,

meaning the dynamics bias persists in these estimates.
14A method for testing whether past outcomes influence current outcomes, as opposed to merely exhibiting auto-

correlation in the model’s errors, is discussed in Chamberlain [1982].
15For examples of applied research using factor models to control for outcome history, see Damm et al. [2024]; for

examples using time trends, see Annan and Schlenker [2015].
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Time trends are often introduced into models by adding unit-specific trends, which are constructed

by interacting unit-specific dummy variables with a polynomial of the time variable. While these

trends capture a general time-specific pattern for each unit, they fail to account for the influence

of past outcomes on current outcomes, such as in autoregressive processes. In other words, time

trends alone do not capture the dynamic relationships in the data where past values directly affect

present outcomes. This is also seen empirically in the applied example in Section 6. Another

prevalent method for controlling for outcome history is the use of factor models. Factor model-

based approaches, such as synthetic controls and synthetic differences-in-differences, [Arkhangelsky

et al., 2021, Abadie et al., 2010] rely on low-rank factor assumptions that do not accommodate

unit-specific dynamics.16 Consequently, to properly account for the dynamics where past outcomes

influence current outcomes, researchers must directly include past outcomes in their models.17

In the applied literature, when the correlation between past and current outcomes is large, another

approach for dealing with dynamics is transforming outcomes to reduce the correlation. For exam-

ple, GDP levels are correlated highly over time, with a correlation parameter of .95, the correlation

of the difference transformed GDP (GDP growth) is smaller and closer to .3. However, transform-

ing the outcomes through this approach still creates bias in treatment effect estimates. This is

discussed in greater detail in the next section.

2 Preview of Results

Before presenting the theoretical results of the paper, I preview the main empirical results of this

paper. I give brief intuition for the origins of dynamic bias. I also compare dynamic bias and

Nickell bias in simulations both when treatment is random and when it is endogenous (related

to past outcomes). I then discuss how commonly used transformations of the outcome variable

interact with these biases.
16In the context of panel data, a low-rank factor model aims to capture cross-sectional correlations among different

units (e.g., individuals, firms, or countries) by assuming that these correlations can be explained by a limited number
of common factors. Importantly, such models focus primarily on capturing variation between units rather than
time-series dynamics within each unit.

17In bio-statistics, the g-formula is also used to control for outcome history, but it does not accommodate selection
on unobserved fixed effects [Robins, 1986, Naimi et al., 2017].
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2.1 Random Treatment

My applied example is based on the literature that studies the effect of temperature on GDP. The

units are countries and the time periods are years. Suppose that the true model is the simple model

given in Equation (1): temperature, Tempi,t, in every time period is an independent and identically

distributed (i.i.d.) random shock conditional on country.18 In a fixed effects model, treatment is

therefore as good as random conditional on the fixed effects. Additionally, past GDP is included

in the true model, as Solow [1956] explains that past GDP impacts current GDP.19

True Model with Random Treatment: GDPi,t “ ai ` τ0Tempi,t ` ρ10GDPi,t´1 ` εi,t. (1)

2.1.1 Models

In this section, I introduce two models that could be used to estimate the treatment effect τ0.

Researchers often estimate these models using OLS. A necessary condition for OLS to be unbiased

is that treatment in time period t, Tempi,t, is uncorrelated with the model error ei,t in time period

t.

Dynamic Model: GDPi,t “ ai ` τ0Tempi,t ` ρ10GDPi,t´1 ` εi,t. (2)

The model error here εi,t is simply the original true model error, so by construction we know

that it is uncorrelated with treatment.

Static Model: GDPi,t “ ai ` τ0Tempi,t ` ei,t
loomoon

ρ10GDPi,t´1`εi,t

. (3)

In the Static Model, researchers do not control for GDPi,t´1. However, GDPi,t´1 is part

of the true model given Equation 1, therefore the GDPi,t´1 term appears in the new model

error along with the original error. Therefore, ei,t :“ ρ10GDPi,t´1`εi,t. Still, Tempi,t remains
18Tempi,t “ ci ` ui,t where ci is a country fixed effect and ui,t is a random shock.
19One way that past GDP affects current GDP through its impact on capital accumulation. Higher GDP in the

past implies higher savings and investment, leading to a larger capital stock in the current period. Since the capital
stock is an input in the production function, a larger capital stock results in higher current GDP.
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uncorrelated with the error term ei,t. This is because the temperature is random, so it is not

related to previous outcomes GDPi,t´1 or model errors εi,t that appear in ei,t.

2.1.2 Cause of Bias

Researchers often estimate these models because they see that treatment in time period t, Tempi,t,

is uncorrelated with model error in time period t. However,researchers still have to estimate fixed

effects ai by either using dummies, the within transformation, or first differences.20 These trans-

formations create new variables that are functions of data in multiple time periods. For example,

consider the within transformation,

ČTempi,t “ Tempi,t ´
1

T

T
ÿ

s“1

Tempi,s. (4)

This new treatment variable ČTempi,t is now a function of Tempi,s in all time periods. Because

of this, unbiased OLS estimation requires not only that treatment in time period t, Tempi,t, is

uncorrelated with model error in time period t, but also that regressors in all time periods are

uncorrelated with model error, which is known as strict exogenieity. The fixed effect estimation

turns past outcomes into generated confounders if they are correlated with either the outcome or

the treatment.21 Both models, the Static Model and Dynamic Model, lead to biased treatment

effects.

1. In the Dynamic Model, treatment in all time periods is uncorrelated with model error because

the past outcome, GDPi,t, is controlled for. However GDPi,t itself in other time periods

is correlated with model error, leading to the well studied Nickell bias. Then because

the coefficient on GDPi,t´1 is estimated with bias, this spills over and biases the treatment

estimate. Nickell bias is discussed in detail in Section 4.1.

2. In the Static Model, treatment in other time periods is correlated with model error. Specif-

ically, Tempi,t´1 is correlated with ei,t, which leads to biased treatment effects. I term this

dynamic bias, which is discussed in detail in Section 3.3.
20Running a regression with within-transformed data leads to same coefficients as running a regression with unit

dummies [Wooldridge, 2010]. Running first-differences also generates bias of a similar form.
21In classic cross sectional causal inference we think of variables as confounders if they are correlated with both the

outcome and treatment.

10



Variation on dynamic bias: Before showing simulation results, I introduce a variation on the

Static Model, which I call the Delta Model, often implemented in applied work that also leads to

dynamic bias.

Delta Model:22 ∆GDPi,t
loooomoooon

GDPi,t´GDPi,t´1

“ ai ` τ0Tempi,t ` ηi,t
loomoon

p1´ρ10qGDPi,t´1`εi,t

. (5)

Some researchers suspect that highly persistent outcomes (ρ10 close to 1) can cause problems with

their analysis, so instead they study transformations of their outcomes, such as differences or

growth. When taking the difference on the left-hand side, this imposes a ρ10 coefficient of 1, since

1 ˆ GDPi,t´1 is subtracted from the model. The difference between 1 and true ρ10 remains in the

error of the model and therefore ηi,t :“ p1 ´ ρ10qGDPi,t´1 ` εi,t.23 A type of dynamic bias occurs

in this model because like in the Static Model, part of the outcome remains in the error term. It

is the case that Tempi,t´1 is correlated with ηi,t, discussed in detail in Appendix E.2, also leading

to bias. I call this type of dynamic bias transformation bias.

2.1.3 Simulation

Although all three models (Dynamic Model, Static Model, and Delta Model) lead to biased treat-

ment effect estimates, the magnitude of the bias varies greatly. I run a simulation and present the

results in Figure (1) to highlight some key takeaways from these biases. I generate datasets based

on the true model given in Equation (1) with random treatment. I set the true treatment effect

τ0 “ .5, and simulate a variety of datasets. Each of the three panels in the figure corresponds to

a different value of the correlation between past outcomes and current outcomes ρ10 P p.2, .5, .9q

used to generate the data. I simulate datasets with 1000 units and vary the number of time periods

along the x-axis. I estimate the treatment effects using OLS to estimate the three models above,

and plot the value of the treatment effect estimates on the y-axis. The number of time periods in

the dataset and the magnitude of ρ10 significantly impact the magnitude of the bias.
22Since Tempi,t only impacts GDPit and not GDPi,t´1, the effect of Tempi,t on the transformed outcome, ∆GDPi,t,

is the same the effect of Tempi,t on the untransformed outcome GDPi,t .
23Note here that only the outcome (GDPi,t) is being transformed through differences - the variables on the right-

hand side are not being differenced - therefore this transformation is not equivalent to the the first-differences
transformation.
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Figure 1: Bias of three different models.

The Dynamic Model (Equation 2) leads to the smallest treatment effect estimate bias out of all

three models regardless of the value of ρ10. The intuition for this is that only the Dynamic Model

explicitly controls for past outcome, and so only in this model does treatment remain strictly

exogenous.

As for whether the Static Model or Delta Model has the largest bias, that depends on the value of

ρ10. When ρ10 is close to 1 (the right most panel), the bias of the Delta Model is smaller than the

bias of the Static Model. This is because in the Delta Model, the past outcome with a coefficient of

1 is subtracted from the current outcome to create the transformed outcome ∆GDPi,t. Therefore

if ρ10 is close to 1, this subtracting is sort of controlling for the past outcome. The opposite is true

when ρ10 is small (close to 0, the left-most panel) - then subtracting out a value of 1 leads to more

bias.

One key lesson for applied work is that the fewer the number of time periods in the panel dataset, the

worse the bias of all these methods. This bias is important to keep in mind when shortening panel

datasets; panel datasets are often shortened in environmental research when studies differentiate

between temperature and climate change by using “long differences”.24 When researchers implement

long differences, they normally reduce the length of the panel, which in turn increases the bias of
24Papers that use long differences include Nordhaus [2006], Deryugina and Hsiang [2014], [Burke et al., 2015].
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the above models. On the other hand, the longer the difference, the smaller the correlation between

the outcomes in the two time periods, which can reduce the bias as well.

2.2 Endogenous Treatment

Treatment effect estimates are even more biased in settings where treatment is not random and is

instead related to past outcomes, making it endogenous. Treatment can be related to past outcomes

due to selection into treatment. Marx et al. [2022], Ghanem et al. [2022] show that many economic

models lead to treatment selection based on past outcomes.

For example, selection into environmental policy treatment is often a function of past environmental

conditions. Policies that target air pollution in specific areas are implemented because of those

areas’ past pollution levels [Chay and Greenstone, 2005]. In Brazil, regional deforestation protection

is based on previous years deforestation [Harding et al., 2021, Assunção et al., 2023]. In public

finance, we might expect that health care spending in the past impacts health care plan choice,

which then impacts future health care spending.25 In development economics, the assignment of

drought relief in southern India has been found to be a function of the region’s past outcomes

[Tarquinio, 2022]. In industrial economics, past firm productivity, which is the outcome, impacts

output choices in current time periods [Olley and Pakes, 1992].

When treatment is endogenous, the bias does not disappear as the number of time periods increases

for the Static and Delta model. Since the treatment is endogenous, omitted variable bias arises

when past outcomes are not explicitly included in the model. This omitted variable bias does not

decrease, regardless of how large the number of time periods or units is. Simulations in Appendix

E.4 demonstrate that even with a small degree of endogeneity, the bias in treatment effect estimates

can be substantial. Omitted variable bias can be removed by controlling for past outcomes and

correcting for the resulting Nickell bias, which is smaller than the omitted variable bias caused by

failing to control for past outcomes.
25A key finding in Kowalski [2023] was that emergency room utilization before the Oregon Health Insurance

Experiment began affected enrollment into health insurance within the experiment, which in turn affected emergency
room utilization.
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3 Theoretical Results

Dynamic bias arises when there are dynamics in outcomes but researchers do not control for past

outcomes when estimating treatment effects. Dynamic bias is explained and characterized in Section

(3.3). Correcting dynamic bias requires controlling for past outcomes. Estimators that include past

outcomes as controls still suffer from Nickell bias, which is discussed in Section (4.1). Section (4.2)

provides the dynamic bias-corrected (DBC) estimator which eliminates Nickell bias.

3.1 Notation

I use Yi,t to denote the outcome, Yi,t´h to denote the hth lag of the outcome, Di,t to denote

treatment, and Wi,t to denote other covariates. I use the superscript t to denote the vector of

variables up to time period t, for example Dt
i :“ pDi,1, Di,2, ¨ ¨ ¨ , Di,tq. The concatenation of all

possible regressors is given by Xi,t :“ pDt
i ,W

t
i , Y

t´1
i q.

Note that the covariates Wi,t can include time period dummies. That is for each time period t I

can include a dummy Qt with 1 in the tth position. This enables the model to include time effects.

I use KK to denote independence, and K for uncorrelated. I use bar notation for averages over

time, for example Ȳi,´1 :“ 1
T

řT
t“1 Yi,t´1 and Ȳi :“ 1

T

řT
t“1 Yi,t. I use tilde to denote the within

transformation, for example,

Ỹi,t´1 :“ Yi,t´1 ´ Ȳi,´1. (6)

3.2 Setup

I begin by introducing the setting under the potential outcomes framework (Splawa-Neyman [1923],

Rubin [1974]). I observe outcomes Yi,t for a sample of units i “ 1, . . . , N for time periods t “

1, . . . , T . The number of time periods T is fixed, but the cross-sectional dimension N grows with

more observations. Therefore, the formal asymptotic results are for the large N setting where

N Ñ 8 and T is fixed. This is also sometimes known as the “short panel”.

For now, let us assume that the treatment Di,t is continuous. For each value d of the treatment

Di,t, unit i has a corresponding potential outcome Yi,tpDi,t “ dq. In the example in Dell et al.
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[2012], Di,t is temperature and Yi,t is country GDP. The authors are interested in estimating the

“contemporary causal effect of temperature on the development process”.26 Formally, the causal

object of interest is average effect of marginally increasing temperature in the current time period

(Di,t) on GDP, holding all else fixed. This is also referred to the contemporary average partial

derivative (APD) and is written as

τ0 “ IE

„

BYi,tpDi,tq

BDi,t



, (7)

where the expectation is over all units and time periods.

I impose structure on the potential outcomes to allow estimation. In the rest of this section, I

showcase that dynamic bias is a problem even in a simple (though common) stylized model. I

use the formula for the bias in this example to provide intuition. However, when I provide a

bias correction in Section 4 I introduce a more general model (Section 4.3.1), to which the DBC

correction also applies.

Assumption 1. (Stylized Example One: Random Treatment.) Let the true vector of parameters

be given by θ0 :“ pρ10, τ0q. The errors εi,t are i.i.d mean zero with variance σ2
ε,i and the errors ui,t

are i.i.d mean zero with variance σ2
u,i. The true underlying has the following structure:

Yi,tpDi,tq “ ai ` τ0Di,t ` ρ10Yi,t´1 ` εi,t, (8)

Di,t “ ci ` ui,t. (9)

This simple example is based off the setting of Dell et al. [2012]. I include Yi,t´1 in the outcome

model because economic theory tells us that past GDP (Yi,t´1) impacts current GDP (Yi,t) [Solow,

1956]. As is standard in panel data, I impose additive fixed effects ai, often called individual fixed

effects, which can be correlated with covariates. In the treatment model in Equation (9),treatment

Di,t is also a function of individual fixed effects ci.27 This structure mimics Dell et al. [2012], who
26One may also be interested in the estimation of the long term effect of treatment, as studied in Hausman [1985],

as opposed to the contemporary. I focus on the contemporary effect in this paper as it is the most common effect of
interest in a set of surveyed applied papers.

27It is important to note dynamic bias remains even if treatment is not a function of fixed effects and Di,t “ ui,t.
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write that treatment is correlated with country fixed effects ai. The presence of fixed effects in the

true structural model generates the need to control for fixed effects in treatment effect estimation.

However, in the data we don’t observe the fixed effects. Further, they cannot be estimated con-

sistently in short panels, which is known as the incidental parameter problem [Neyman and Scott,

1948]. I bypass the estimation of fixed effects by using within-estimation, which leads to the same

estimates of θ “ pρ10, τ0q as would explicitly estimating fixed effects by including fixed effect dum-

mies for each unit.

Assumption 2. (Weak Exogeneity.)

εi,t, ui,t K pXt
i , aiq, Xt

i :“ pXi,1, . . . , Xi,t´1, Xi,tq. (10)

The weak exogeneity assumption says the that error has zero conditional expectation given current

and past covariates. Because the structural outcome model allows for lagged outcomes to impact

current outcomes, I cannot make the more familiar strict exogeneity assumption, which would

require that the regressors are uncorrelated with the error term across all time periods, meaning

that current, past, and future values of the regressors do not influence the current error term.

Assumption 3. (Independence across i) The data vectors Zi “ tpYi,t, X
1
i,tq

1uTt“1 are i.i.d. across

units i.

3.3 Dynamic Bias

Given the model laid out above, I now introduce dynamic bias and show how it impacts treatment

effect estimates. Dynamic bias arises when there is a relationship between past outcomes and

current outcomes in the true model but past outcomes are not included in the estimation model.

A crucial feature of dynamic bias is that it arises even when the treatment is random.

3.3.1 Causal Object

Given the simple stylized model presented in Assumption (1), in particular the homogeneous treat-

ment assumption in Equation 8, the treatment object of interest is simply τ0. This follows using

our definition of the APD from Equation (7) along with potential outcome given in Equation 8.
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IE

„

BYi,tpDi,tq

BDi,t



“ IE

«

B
`

ai ` τ0Di,t ` ρ10Yi,t´1 ` εi,t
˘

BDi,t

ff

“ τ0. (11)

In the context of Dell et al. [2012] this would represent the contemporary causal effect of temperature

on the development process.

3.3.2 Estimation

In settings where treatment assignment is random, applied researchers often rely on a static model

that does not account for past outcomes to estimate τ0. I write the static model in Equation (12).

Model 1: Static Model

Yi,t “ ai ` τDDi,t ` ei,t, (12)

Given the true model presented in Assumption 1, the error in the static model is given by ei,t :“

ρ10Yi,t´1 ` εi,t. Since applied researchers do not observe fixed effects ai, they can not use OLS

to estimate equation (12) directly. Instead they have to estimate the fixed effects with dummy

variables, or by using the within or first difference transformation. I remove the fixed effects by

using the within-transformation, which recall was defined in Equation (6).

Model 2: Within-Transformed Static Model

Ỹi,t “ τDD̃i,t ` ẽi,t. (13)

OLS Estimator. To estimate the treatment effect, OLS is used to estimate Equation (13). I call

the coefficient estimated this way τ̂D. Unfortunately τ̂D is inconsistent—no matter how large the

number of units grows, the estimator does not converge to the true parameter value.

Theorem 3.1. (Dynamic Bias.) Under Assumptions (1), (2), (3), and that V arpDi,tq ą 0, running

OLS to estimate the static model in Equation (13) leads to a biased treatment effect estimator τ̂D.

plim
NÑ8

τ̂D “ τ0 ´
ρ10τ0

T pT ´ 1q

„

T

1 ´ ρ10
´

1 ´ ρT10
p1 ´ ρ210q



. (14)
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The proof of Theorem (3.1) is given in Appendix A. This bias is what I term dynamic bias. This

bias is of order 1{T , and it diminishes as the number of time period increases.

3.3.3 Dynamic Bias Intuition

Dynamic bias arises due to the estimation of fixed effects, which are typically estimated by including

dummies, applying within-transformation, or first-differencing the data. This estimation generates

confounding if past outcomes are not controlled for. In classic cross-sectional causal inference,

a covariate is a confounder only if it is correlated with both the treatment and the outcomes.

This reasoning explains why many researchers opt for static panel regressions; in their contexts,

treatment is random, so although past outcomes affect current outcomes, they are not correlated

with the treatment and, therefore, are not classic confounders [Angrist and Pischke, 2009]. Due

to fixed effects estimation, a past outcome is a generated confounder and generates bias if it is

correlated with either the treatment or the outcome.

Estimation of models with fixed effects requires strict exogeneity for unbiased estimation. When

treatment is random, and the past outcome is controlled for in the model, then treatment is a strictly

exogenous regressor. However, when the past outcome is not controlled for, the past outcome is part

of the model error, and treatment is no longer strictly exogenous. This leads to biased treatment

effects.

To see algebraic intuition for why strict exogeneity does not hold, consider the within-transformation

approach for estimating fixed effects. After applying the within transformation, the newly trans-

formed variables become functions of data from all time periods. Consequently, the errors ẽi,t are

functions of errors ei,t across all time periods, causing the within-transformed error to be correlated

with the treatment, which in turn leads to endogeneity.

1. rei,t is a function of ei,t`1.

(Because of the definition of the within transformation: rei,t “ ei,t ´ 1
T

řT
s“1 ei,s.)

2. ei,t`1 is a function of Yi,t.

(Because ei,t`1 :“ ρ10Yi,t ` εi,t`1 by definition of the Static Model error.)

3. Yi,t is a function of Di,t
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(Because Yi,t “ ai ` τ0Di,t ` ρ10Yi,t´1 ` εi,t by definition of the true model in Equation (8).)

Therefore rei,t is a function of Di,t.

However, if past outcomes had been included in the model, the treatment would have been a

strictly exogenous regressor. Dynamic bias occurs when the outcome lag is not considered, leading

to potentially large biases in treatment effect estimates. This dynamic bias can be mitigated by

including past outcomes in the regression model.

However, even when past outcomes are included, the well-known Nickell bias remains. In the next

section, I will discuss Nickell bias and then demonstrate in Section 5 that, in simulations, Nickell

bias is much smaller than dynamic bias. Regardless of the values of ρ10 or τ0, I show that in

simulation that dynamic bias is consistently larger than Nickell bias.

4 Debiased Estimator (DBC)

The DBC estimator works both when treatment is random and when treatment is a function of

past outcomes and is therefore endogenous.

To explain how the bias correction works, I assume the following simple data-generating processes

for the remainder of the section. However, the results of the paper hold for a richer class of models.28

Equation (16) shows that the treatment is a function of the past outcome. Recall biases get worse

if, in addition to past outcome not being controlled for, treatment is related to past outcomes in the

true model (not random). This is because in addition to dynamic bias there is now omitted variable

bias. Equation (15) shows that outcomes are a function of the past outcome and treatment. This

simple example highlights the causal parameter of interest, inferential goal, and key assumptions

of this approach.

Assumption 4. (Stylized Example Two: Endogenous Treatment.) The true underlying data gen-

erating has the following structure:

Yi,tpDi,tq “ ai ` τ0Di,t ` ρ10Yi,t´1 ` εi,t, (15)
28The richer class of models are given in Section 4.3.1 below.

19



Di,t “ ci ` ρ20Yi,t´1 ` ui,t, (16)

where as before εi,t and ui,t are i.i.d mean zero true errors with variance σ2
i,ε and σ2

i,u.

4.1 Dynamic Model

Nickell bias occurs when a regression includes both estimated fixed effects and past outcome vari-

ables as regressors. Since fixed effects are not observed, they have to be estimated with dummies,

the within-transformation, or first differences. These transformations impact all parts of the model,

including the error terms. Taking the within transform as an example, the transformed error term

becomes a function of error terms in all time periods. Therefore, if a regressor is a function of past

error terms (like lagged outcome variables), it becomes correlated with the new within-transformed

errors.

Model 3: Within-Transformed Dynamic Model

Ỹi,t “ τ0D̃i,t ` ρ10Ỹi,t´1 ` ε̃i,t (17)

D̃i,t “ ρ20Ỹi,t´1 ` ũi,t (18)

OLS Estimator. One could estimate treatment effects with a dynamic model by using OLS to

estimate Equation (17). This OLS regression leads to estimates of τ̂NB and ρ̂NB
1 that have Nickell

bias. Though less common in practice, researchers could also use OLS to estimate Equation (18) to

get the estimate ρ̂NB
2 . Our vector of estimated OLS parameters is θ̂NB :“ pρ̂NB

1 , τ̂NB, ρ̂NB
2 q. The

estimated residuals for a given parameter vector θ̂ are given by ε̃i,tpθ̂q :“ Ỹi,t ´ τ̂ D̃i,t ´ ρ̂1Ỹi,t´1 and

ũi,tpθ̂q :“ D̃i,t ´ ρ̂2Ỹi,t´1 . By definition we have that ε̃i,tpθ0q “ ε̃i,t and ũi,tpθ0q “ ũi,t.

To see concretely how the Nickell bias arises, focus on the OLS estimation of Equation (17). I use

the familiar formula for our OLS coefficients
`

θ̂ “ pX1Xq´1X1Y
˘

plugging in our stack of covariates,

a pN ¨NT q ˆ 2 matrix X whose row i, t is Xi,t “ rỸi,t´1 D̃i,ts
1, and the outcomes given in vector Y

where the i, t-th element is Ỹi,t.
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»

—

–

ρ̂NB
1

τ̂NB

fi

ffi

fl

“
`

X1X
˘´1`X1Y

˘

(19a)

“

»

—

–

ρ10

τ0

fi

ffi

fl

loomoon

19.1

`

ˆ

1

N
X1X

˙´1

loooooomoooooon

19.2

ˆ

1

N

N
ÿ

i“1

T
ÿ

t“1

»

—

–

Ỹi,t´1

D̃i,t

fi

ffi

fl

„

ε̃i,t

˙

looooooooooooooooomooooooooooooooooon

19.3

(19b)

If the errors were strictly exogenous the expectation of term 19.3 would be zero, and the OLS

estimator would be unbiased. This would imply that IErỸi,t´1ε̃i,ts “ 0 and IErD̃i,tε̃i,ts “ 0. However,

given the model in Assumption (4) the expectation of term 19.3 is not zero. This is because

IErỸi,t´1ε̃i,ts ‰ 0 and IErD̃i,tε̃i,ts ‰ 0 . As an example, let us focus on why IErỸi,t´1ε̃i,ts ‰ 0. It

follows that Ỹi,t´1 and ε̃i,t are correlated by observing that they are both correlated with εi,t´1.

First, Ỹi,t´1 is a function of Yi,t´1, which itself is a function of εi,t´1. Second, ε̃i,t “ εi,t ´ ε̄i,t and

ε̄i,t “ 1
T pei,0 ` ¨ ¨ ¨ εi,t´1 ` ¨ ¨ ¨ ` εi,T q. Similar logic is used to understand why IErD̃i,tε̃i,ts ‰ 0.

4.2 Bias Correction

4.2.1 OLS Intuition

Though my de-biased DBC estimator uses a GMM framework, I first build an understanding for how

the bias correction works using OLS. Focusing on the OLS estimates in Equation (19) , I calculate

an expression for the asymptotic OLS estimator bias (term 19.2 + 19.3). The bias correction is

created by calculating an estimate of this bias term, and the de-biased estimator by re-centering

the GMM moment condition.

Rewriting Equation (19), I get an expression of the asymptotic bias of the OLS estimator.

Bias “ plim
NÑ8

»

—

–

ρ̂NB
1

τ̂NB

fi

ffi

fl

´

»

—

–

ρ10

τ0

fi

ffi

fl

“ plim
NÑ8

«

ˆ

1

N
X1X

˙´1

loooooomoooooon

19.2

ff

plim
NÑ8

«

ˆ

1

N

N
ÿ

i“1

T
ÿ

t“1

»

—

–

Ỹi,t´1

D̃i,t

fi

ffi

fl

„

ε̃i,t

˙

looooooooooooooooomooooooooooooooooon

19.3

ff (20)
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The bias correction comes from solving for r19.3s and subtracting the estimated bias out. Therefore

the bias-corrected estimate θ̂DBC “ θ̂NB ´ ˆBias. Since I am interested in θ0 “ pρ10, τ0, ρ20q, not just

ρ10 and τ0, I need to estimate both Equations (17) and (18). In order to estimate both equation

simultaneously, I cast the problem as a GMM system.

4.2.2 GMM Bias Correction

The original moment conditions, which contain bias, for estimating the parameters in Equations

(17) and (18) are given in Equation (21). I index the moment conditions by iT to make it clear

that they are functions of the data and that the number of time periods T is fixed.

miT pθq “

»

—

—

—

—

–

mρ1,iT pθq

mτ,iT pθq

mρ2,iT pθq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθq

1
T

řT
t“1 D̃i,tε̃i,tpθq

1
T

řT
t“1 Ỹi,t´1ũi,tpθq

fi

ffi

ffi

ffi

ffi

fl

(21)

Because of Nickell bias, the expectation of these moment equations are not zero at the true param-

eter θ0. For each moment in miT pθq, however, I can create a new de-biased moment by subtracting

the mean of each original moment equation at θ0. By construction, this new moment that is mean

zero at the true parameters. This term that I subtract out is labeled biT pθ0q and is written

biT pθ0q “

»

—

—

—

—

–

bρ1,iT pθ0q

bτ,iT pθ0q

bρ2,iT pθ0q

fi

ffi

ffi

ffi

ffi

fl

“ IE

»

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0q

1
T

řT
t“1 D̃i,tε̃i,tpθ0q

1
T

řT
t“1 Ỹi,t´1ũi,tpθ0q

fi

ffi

ffi

ffi

ffi

fl

. (22)

The analytic bias correction comes from solving for biT pθ0q.

Bias Correction Formula Intuition. A detailed calculation biT pθ0q is given in Appendix B.1.

However, here, I give intuition for how the calculation works. As an example, consider bρ1,iT pθq “

IEr 1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0qs. To calculate this expectation, we need to derive how Ỹi,t´1 relates to ε̃i,t.

To do this, it is helpful to unpack Ỹi,t´1 by looking just at Yi,t´1 and how it depends on εi,t terms

in all time periods. I use the outcome model in Assumption 4 to write Yi,t´1 as a sum of past
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outcomes and errors by iteratively plugging in the definition of past outcomes and treatment.29:

Yi,t´1 “ ai

t´2
ÿ

j“0

pρ10 ` τ0ρ20qj ` pρ10 ` τ0ρ20qt´2Yi,0 ` τ0

t´2
ÿ

j“0

pρ1 ` τρ2qjpci ` ui,t´j´1q

`

t´2
ÿ

j“0

pρ10 ` τ0ρ20qjεi,t´j´1

(23)

Given equation (23), it is clear how Yi,t´1 relates to εi,t in all time periods. The dependence comes

from the
řt´2

j“0pρ1 ` τρ2qjεi,t´j´1 term. Using the properties of geometric sums and accounting for

the fact that I am calculating the expectation of the within-transformed Ỹi,t´1 and ε̃i,t, I calculate

the following bias correction terms.

Lemma 4.1. (Bias Correction Terms.) Under Assumptions 2, 3, 4, 7 the expression for bpθ0q is

the following.

bρ1,iT pθ0q “
´σ2

ε,i

T

ˆ

T ´ 1

1 ´ φpθ0q
´

φpθ0q ´ φpθ0qT

p1 ´ φpθ0qq2

˙

, (24)

bτ,iT pθ0q “ ρ20 ˆ bρ1pθ0q, (25)

bρ2,iT pθ0q “ τ0 ˆ
´σ2

u,i

T 2

ˆ

T ´ 1

1 ´ φpθ0q
´

φpθ0q ´ φpθ0qT

p1 ´ φpθ0qq2

˙

. (26)

Here φpθq “ pρ10 ` τ0ρ20q. Proofs are given in Appendix B.1. The true variance parameters σ2
ε,i

and σ2
u,i are not observed and have to be estimated. The estimated bias correction terms are the

following.

Estimated Bias Correction Terms.

σ̂2
ε,iT pθq “

1

T ´ 1

T
ÿ

t“1

ε̃i,tpθq2 (27)

29This formula uses the fact that treatment is varying over time. If it is the case that treatment is “absorbing”
(once a unit starts treatment they stay treated), a different formula applies, given in Appendix G.
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σ̂2
u,iT pθq “

1

T ´ 1

T
ÿ

t“1

ũi,tpθq2 (28)

b̂ρ1,iT pθq “
´σ̂ε,iT pθq2

T

ˆ

T ´ 1

1 ´ φpθq
´

φpθq ´ φpθqT

p1 ´ φpθqq2

˙

(29)

b̂τ,iT pθq “ ρ2 ˆ b̂ρ1,iT pθq. (30)

b̂ρ2,iT pθq “ τ ˆ
´σ̂u,iT pθq2

T 2

ˆ

T ´ 1

1 ´ φpθq
´

φpθq ´ φpθqT

p1 ´ φpθqq2

˙

(31)

Here IErσ̂2
ε,iT pθ0qs “ σ2

ε,iT and IErσ̂2
u,iT pθ0qs “ σ2

u,iT .

4.3 Bias-Corrected GMM Estimator

The bias-corrected moment equations are the original OLS moment equations minus the bias cor-

rection term:

mDBC
iT pθq :“ miT pθq ´ b̂iT pθq. (32)

Given the definition of the model, only at θ0 do the residuals in the original moment equation equal

the true noise variables in the bias correction term. Consequently, the moment conditions for the

the de-biased moment equations are satisfied:

IE

„

mDBC
iT pθ0q



“ IE

»

—

—

—

—

–

mDBC
ρ1,iT

pθ0q

mDBC
τ,iT pθ0q

mDBC
ρ2,iT

pθ0q

fi

ffi

ffi

ffi

ffi

fl

“ IE

»

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0q ´ b̂ρ1,iT pθ0q

1
T

řT
t“1 D̃i,tε̃i,tpθ0q ´ b̂τ,iT pθ0q

1
T

řT
t“1 Ỹi,t´1ũi,tpθ0q ´ b̂ρ2,iT pθ0q

fi

ffi

ffi

ffi

ffi

fl

“ 0 (33)

Bias-Corrected Estimator. The DBC estimator θ̂DBC is obtained by solving the GMM objec-

tive function under sample moment conditions:

θ̂DBC “ argmin
θ

ˆ

1

N

N
ÿ

i“1

mDBC
iT

˙1ˆ 1

N

N
ÿ

i“1

mDBC
iT

˙

. (34)
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I now derive asymptotic properties. Since the proposed estimator is based on GMM, asymptotic

normality is established following standard results from the GMM framework.

Assumption 5. (Stationarity.) For some small δs ą 0

|ρ1 ` τρ2| ď 1 ´ δs (35)

This assumption ensures that the process is stationary, meaning that the statistical properties (such

as the mean and variance) of the outcome are stable over time.

Assumption 6. The parameter space Θ is compact, θ0 is the unique solution to Equation 33, and

θ0 satisfies Er∇θm
DBCpθ0qs having full column rank. Furthermore, θ0 is in the interior of Θ.

Assumption 7. The noise εi,t and ui,t are independent across i and t with IErεi,ts “ 0 and

IErui,ts “ 0, and IErε2i,ts “ σ2
ε,i ă C fand IEru2i,ts “ σ2

u,i ă C. Also

max
i

IE
“

}εi,t}
4`δε

‰

ă 8 @t for some δε ą 0

max
i

IE
“

}ui,t}
4`δu

‰

ă 8 @t for some δu ą 0.

(36)

Errors are uncorrelated: Erεi,tui,ts “ 0 for all i and t and Erεi,tεiss “ 0 and Erui,tuiss “ 0 for t ‰ s

and Erεi,tuiss “ 0. Finally, the initial values Yi0 and Di0 satisfy IErY 2
i0s ă 8 and IErD2

i0s ă 8 for

all i.

Theorem 4.2. Under Assumptions (2) (3) (4), (5), (6), (7) the limiting distribution as T remains

fixed and as N Ñ 8 of the estimator presented in Equation (34) is given by:

?
Npθ̂DBC ´ θ0q

d
ÝÑ N p0, G´1ΩG1´1q, (37)

with

Ω “ plim
NÑ8

“ 1

N

N
ÿ

i“1

mDBC
iT pθ0qm1DBC

iT pθ0q
‰

, (38)

and

G “ plim
NÑ8

r
1

N

N
ÿ

i“1

∇θ0m
DBC
iT pθ0qs (39)
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The complete expressions for Ω, G and the proof are given in Appendix (C).

4.3.1 More Flexible Model

The bias correction formula for the more following more general model is given in Appendix B.2.

Assumption 8.

Yi,t “ ai `

Nc
ÿ

c“1

τcpDi,t ¨ W c
i,tq ` β1X1,i,t ` ρ1Yi,t´1 ` εi,t (40)

Di,t “ ci ` ρ2Yi,t´1 ` β2X2,i,t ` ui,t (41)

Allowing the past outcomes Yi,t´1 through Yi,t´h to impact current potential outcomes follow from

Breitung et al. [2022] and general VAR structure follows from Juodis et al. [2015]. In an in-progress

extension to this paper, I have a machine learning estimator that still imposes additive fixed effects

and errors, but allows for more flexible modeling of the regressors, such as the interaction terms

in the model above. A discussion of this extension is given in Appendix F. Note that a general

nonparmetric form with a non-separable fixed effect is not possible, especially with fixed T .30

5 Simulation Study

In this section, I present a simulation study to compare the dynamic and Nickell bias along several

dimensions. I provide additional details for the simulation that I introduced in Section 2 as well as

additional results comparing my DBC estimator to other Nickell bias correction procedures.

5.1 Dynamic Bias Versus Nickell Bias

5.1.1 Simulation Design with Random Treatment

I start with a Monte Carlo simulation using the structural model presented in Assumption 1, which

I reproduce here:
30The current methods that control for time varying unobserved heterogeneity rely on large T asymptotics so they

can estimate latent factor structures, which is not the setting of this paper [Moon and Weidner, 2017].
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Yi,t “ ai ` τ0Di,t ` ρ10Yi,t´1 ` εi,t. (42)

Di,t “ ai ` ui,t.
31 (43)

In Equation (42), the outcome is a function of the treatment and the past outcome. For the

treatment model (Equation 43), I make treatment a function of the fixed effect, in line with the

common practice in applied research of adding fixed effects to account for correlation between

treatment and a time-invariant individual-level term.32 This model is the simplest setting, where

Di,t is not impacted by past Yi,t´1. The errors ui,t and εi,t are i.i.d random noise.

The individual fixed effects are drawn from a normal distribution ai „ Np0, 5q. The treatment is

set to τ0 “ .5. I vary the values of ρ10. 33

Simulation estimators: I compare the OLS estimates of three different models.

1. Within-Transformed Static Model: From Equation (13). This model does not include past

outcome as a control, and therefore has no lag.

Ỹi,t “ τDD̃i,t ` ẽi,t, (44)

2. Within-Transformed Dynamic Model: From Equation (17). This model does include past

outcome as a control, and therefore has a lag.

Ỹi,t “ τ0D̃i,t ` ρ10Ỹi,t´1 ` ε̃i,t, (45)

3. Within-Transformed Delta Model:

∆Ỹi,t “ τ0D̃i,t ` ρ10Ỹi,t´1 ` η̃i,t, (46)
31Here I keep the fixed effect term the same across the treatment and outcome model for simplicity, but exactly

matching Assumption 1 by modify treatment to Di,t “ ci ` ui,t would produce similar results.
32It is important to note dynamic bias remains even if treatment is not a function of fixed effects and Di,t “ ui,t.
33Though I show simulations for this setting, Nickell bias is smaller than dynamic bias in all DGPs I have studied.

Additional simulation results for a wide variety of parameters are given in AppendixD.1
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I repeat the same data generating process for a range of different panel lengths. For each number

of time periods NT : 3 - 50, I generate datasets and plot the OLS estimate of the Static, Dynamic,

and Delta Models.

Figure 2 (replicated from Section 2) plots the results. On the x-axis we have the number of time

periods in the generated panel data set, and then the y-axis marks the treatment estimate. The

true treatment effect value is marked with a black horizontal line.
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Figure 2: Bias of three different models.

The plots show that even when treatment is random, dynamic bias and transformation bias are

larger than Nickell bias. The Nickell bias is small because treatment effect coefficient is biased only

because the coefficient on the past outcome is estimated with bias, which then leads to bias in the

other parameters in the model.

5.1.2 Simulation Design with Endogenous Treatment

Now let us consider the case when treatment is not random. I modify the DGP to follow the

structural model outlined in Assumption 4:

Yi,t “ ai ` ρ01Yi,t´1 ` τ0Di,t ` εi,t, (47)

Di,t “ ai ` ρ02Yi,t´1 ` ui,t. (48)
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I set ρ20 “ .1, and generate results analogously to those in the previous section, but now using the

endogenous treatment simulation design.

Figure 3 present the results. The bias gets larger the larger the absolute value of ρ20. Recall that

when treatment is endogenous, the bias for the Static and Delta model does not disappear as the

number of time periods increases because omitted variable bias arises when past outcomes are not

explicitly included in the model. Note in Figure 3, for the case of ρ10 “ .9, the bias under the

Static Model is so large it is omitted from the plot.
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Figure 3: Bias of three different models.

5.2 Bias Correction Simulation

In these simulations I showcase the performance of my bias-corrected estimator. I also show how

my estimator performs in comparison to the Arellano Bond estimator [Arellano and Bond, 1991].

I create a simulation data generating process with an endogenous treatment following Equations

(47) and (48). Again, the individual fixed effects are drawn from a standard normal distribution

ai „ Np0, 5q. The initial values Di0 „ Npai, 1q. The vector of the true parameters is given by

θ0 “ pρ10, τ0, ρ20q “ p.2, .5, .3q.

Simulation Estimators:

1. Within-Transformed Dynamic Model from Equation (17). This model does include past
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outcome as a control, and therefore has a lag.

Ỹi,t “ τ0D̃i,t ` ρ10Ỹi,t´1 ` ε̃i,t, (49)

2. My bias-corrected GMM estimator, presented in the previous section in Equation (34)

3. Arellano Bond estimator. Implemented using the R package plm34.

I run 1000 Monte Carlo simulations with the number of units N “ 1000 and the number of time

periods NT “ 5.

DBC τ̂ OLS τ̂ AB τ̂

Mean 0.501 0.469 0.487
SD 0.015 0.014 0.311

95% cov 0.950 0.440 0.960

Table 1: Average estimates of the treatment effects τ0.

DBC ρ̂1 OLS ρ̂1 AB ρ̂1
Mean 0.198 -0.026 0.187

SD 0.020 0.014 0.099
95% cov 0.960 0.000 0.970

Table 2: Average estimates of parameter on past outcome in outome equation ρ10.

Table 1 compares three different estimation strategies for treatment effects. The table compares

my bias-corrected (DBC) estimator and ordinary least squares (OLS) estimates and Arellano Bond

(AB) estimates. The DBC estimates are closest to the true treatment parameter τ0 “ .5. The table

presents the mean and standard deviation (sd) for each estimate, showing that DBC estimates yield

proper 95% coverage, while OLS does not. The Arellano Bond (AB) estimator uses several lagged

variables as instruments. The data was generated with random i.i.d errors, and so by construction

the instruments are valid. The results demonstrate that AB models also achieve proper 95%

coverage. I find that proper coverage is achieved regardless of the instruments used. However,

the instrument choice does have a substantial effect on the standard deviations of the estimates.

Using fewer instruments leads to an even larger standard deviation for the AB estimates. The

large standard deviations explain why in practice for a particular dataset (as opposed to our Monte
34Identifying equations Ep∆Yi,t ´∆Xi,tβ0qXt´2

i “ 0, t “ 2, . . . , T.. Our instruments are Yi,t´2, Yi,t´3, Yi,t´4, Yi,t´5,
Di,t´2, Di,t´3, Di,t´4, Di,t´5
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Carlo setting here where we average over 1000 datasets) the choice of instruments can lead to

very different treatment effect estimates. In the table 1 present the AB results in which I selected

the instruments that led to the smallest standard deviation for treatment (τ), using all possible

instruments. Yet, even in this case, AB estimation still leads to standard deviations that are larger

in comparison to DBC.

Table 2 compares the same three different estimation strategies for ρ10 “ .2. While OLS led to

biased estimates of treatment effects, the bias of the ρ10 is much larger and even changes sign. Both

my DBC method and AB are able to achieve proper coverage of the true ρ10, but the standard

deviation of method is again substantially smaller for my estimator.

6 Empirical Example

This paper is highly relevant for any applied research where past outcomes influence current out-

comes. As discussed in the introduction, this includes studies focusing on variables such as agri-

cultural yields, human capital, labor market outcomes, and migration flows.

To illustrate the application of my method, I focus on the relationship between temperature (as the

treatment) and GDP (as the outcome). This relationship has been extensively explored in prior

literature, and for this analysis, I utilize data from the seminal study by Dell et al. [2012].

6.1 GDP and Temperature

Dell et al. [2012] explores the relationship between temperature (Di,t) and GDP (Yi,t), and examines

how rising temperatures can impact economic growth. The authors’ results suggest that warmer

temperatures can lead to reduced agricultural yields, decreased labor productivity, and increased

health risk, all of which can hinder economic outcomes. The main result of their paper focuses on

how higher temperatures affect poorer countries.

I use this empirical example to highlight two main points. First, I use the example to show

how dynamic bias, transformation bias, and Nickell bias compare in a real world setting. This is

discussed in detail in Section 6.1.1. Second, I highlight how my bias correction performs in practice

and compare it to Arellano Bond. This is discussed in detail in Section 6.1.2.
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6.1.1 Comparing Bias

In Table 3, I present estimates from regressions of GDP growth and levels on temperature using

data from Dell et al. [2012]. The main results of Dell et al. [2012] focus on the impact of temperature

on the GDP of poor countries, so my sample is restricted to poor countries. I do this for simplicity

so that this analysis can focus on one treatment effect estimate. I exactly replicate the original

analysis that uses all countries Dell et al. [2012] in Appendix E. The replication there is consistent

with the results presented here.

In Table 3, I present the subset of results focused on poor countries. In the first two columns, I

run baseline regressions where I regress GDP growth on temperature in the first column and then

the second column shows how these estimates change once lagged GDP growth is included. In the

third column and fourth columns I include all the original controls used in Dell et al. [2012], which

are 371 region and time controls . The third column of my Table 3 follows the same specification

given in the second column of Table 2 in Dell et al. [2012] - the outcome is GDP growth, and

the past outcome is not controlled for. The treatment effect estimate without controlling for the

lagged outcome is -1.421. Then in Column 4 I include lagged GDP growth, and the treatment

effect estimate changes to -1.279. This is a 10% difference in treatment effects that is significant at

the p ă .1 level.35

These changes in coefficient occur despite the fact that I include the large number of time trend

controls used in the original analysis. This highlights the point discussed in the introduction: time

trend controls do not control for dynamics. To see this analytically, I run additional specifications

to see how treatment effect estimates are impacted by the controls. In Table 3 Column 1 and

2 I run the same specifications in Column 3 and 4 respectively, just without controls. Adding

controls increases the estimated coefficient, whereas controlling for lags decreases the estimate

– demonstrating that controls do not correct for dynamic relationships in outcomes. Adding the

lagged outcome changes the treatment effect estimate by the same percentage regardless of whether

or not controls are included.
35To test whether the treatment estimate in Column 3 pτ̂3q is statistically significantly smaller than the treatment

estimate in Column 4, pτ̂4q I conduct Wald test and the resulting p-value is .06. The Wald test requires accounting
for the correlation between τ̂3 and τ̂4. These two estimates are highly correlated, which is why even though the
estimates have a large variance, the null hypothesis is still rejected at the p < .1 level.
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Table 3

Outcome: GDP Growth Outcome: GDP Level

(1) (2) (3) (4) (5) (6)

Temperature ´1.139˚˚˚ ´1.052˚˚˚ ´1.421˚˚˚ ´1.279˚˚˚ 174.202˚˚˚ ´19.330˚˚

(0.244) (0.247) (0.397) (0.401) (50.315) (8.018)

Outcome Lag 0.136 0.109˚˚˚ 1.025˚˚˚

(0.083) (0.021) (0.003)

Controls No No Yes Yes Yes Yes

Observations 2,452 2,389 2,452 2,389 2,754 2,691
R2 0.106 0.126 0.205 0.218 0.788 0.995
Adjusted R2 0.082 0.102 0.114 0.127 0.761 0.994

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

It is important to note that GDP growth is calculated by transforming GDP levels. Looking

at GDP growth rather then GDP levels may somewhat reduce dynamic bias, but it introduces

transformation bias, as discussed in Section 2 and Appendix E.2. The magnitudes of both biases

depend on ρ10 and the number of time periods. In this particular setting, the true ρ10 is very close

to 1 and the number of time periods is 30, so the transformation bias is not as large as the dynamic

bias.

To understand the impact of temperature on the original untransformed variable, I use GDP levels

as the outcome in Table 3 Column 5 and Column 6. This is important because as discussed in

Nath et al. [2024], the economic literature is divided over whether temperature affects GDP levels

or growth rates. Therefore, it is also important to study GDP levels. Levels of outcomes are often

studied in economics papers. 36 The impact of including past outcomes in the regression models

is even greater when looking at GDP levels. Table 3 Column 5 shows that without controlling for

past outcome the treatment estimate is unexpectedly positive (174.202), and only becomes negative

(-19.330) as expected when controlling for past GDP level in Column 6.
36Many economics papers study the levels of outcome variables without controlling for past outcomes. Somanathan

et al. [2021] study the impact of temperature on economic productivity without controlling for levels, Annan and
Schlenker [2015] study the temperature effects of crop yield levels.
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6.1.2 Comparing Bias Correction to Arellano Bond

In this section I compare the performance of my bias correction method to Arellano Bond using

real data from Dell et al. [2012]. In the case of Dell et al. [2012], the number of time periods is 30,

and so the expectation is that Nickell bias is relatively small.

I replicate the analysis of Table 3 Column 2 and present the resulting estimates of τ0 and ρ10 are

presented in the “OLS with Lag” columns in Table 4 and Table 5, respectively. I do the analysis

on a balanced panel; therefore, the OLS estimates of τ0 and ρ10 are slightly different from those in

Table 3 where I used the unbalanced panel of Dell et al. [2012].37

I then implement my bias correction method for both parameters; the results are given in the

bias-corrected columns labeled “DBC”. The bias-corrected method does not change the estimate of

treatment τ0 effect much, but does lead to higher estimate of ρ10. This is expected as Nickell bias

is small in the setting when the number of time periods is 30, and also Nickell bias impacts the

estimation of ρ10 more than the estimation of τ0.

The tables also include the Arellano Bond estimates. Arellano and Bond [1991] is one of the most

cited papers in economics as it was one of the first papers to correct for Nickell bias. This approach

requires picking which past outcomes are used as instruments, but point estimates of both τ0 and

ρ10 are quite sensitive to this choice. I run three different Arellano Bond specifications, changing

which lags used as instruments - these results are reported in columns “AB 1”, “AB 2” and “AB 3”.38

Looking first at the treatment point estimates in Table 4, depending on the choice of instrument

the point estimates go from negative (-.460) to positive and become an order of magnitude smaller

(.060). A similar pattern occurs with the point estimates of ρ̂10 given in Table 5. Depending on

the choice of instrument, the point estimates go from negative (-.016) to positive and change by an

order of magnitude larger (.101). Avoiding the instability associated with the choice of instrument

is a benefit of my analytical approach.

The standard errors for all methods were calculated with the panel bootstrap clustered at the

country level. The standard errors of the bias-corrected method are smaller than the standard
37The extension to unbalanced panels can be implemented but is left for future work.
38For specification AB 1, I use the lag 2-5 for both variables, for AB 2 I used lags from 2-15, for AB 3 I use lags

10-15.
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errors of Arellano Bond method, and are close to the original OLS standard errors, for both τ̂ and

ρ̂1. Depending on the instruments, the standard errors of AB vary, and can be twice as large as

the OLS and DBC standard errors.

DBC τ̂ OLS with Lag τ̂ AB 1 τ̂ AB 2 τ̂ AB 3 τ̂

Mean -1.145 -1.143 0.060 -0.283 -0.460
SE 0.164 0.166 0.345 0.332 0.415

Table 4: Estimates of τ0.

DBC ρ̂1 OLS with Lag ρ̂1 AB 1 ρ̂1 AB 2 ρ̂1 AB 3 ρ̂1
Mean 0.200 0.163 0.094 0.101 -0.016

SE 0.094 0.090 0.100 0.108 0.141

Table 5: Estimates of ρ10.

7 Conclusion

This paper identifies a source of bias in fixed effects panel models, which I term dynamic bias, which

occurs when past outcomes are left out of the model. Economic research often uses static models

even in settings in which economics theory tells us that past outcomes directly influence current

outcomes[Griliches, 1963],[Cunha and Heckman, 2007], [Blanchard and Summers, 1988],[Massey

et al., 1993]. Empirical papers studying these outcomes often run fixed effects analysis without

controlling for past outcomes.39

Through simulations I show that dynamic bias is larger than the well-known Nickell bias. While

Nickell bias comes from including past outcomes in the model, dynamic bias occurs when past

outcomes are excluded. Through simulations and real-world data, I demonstrate that ignoring past

outcomes can lead to significantly biased treatment effect estimates, even when treatments, such

as temperature, are randomly assigned. This bias is especially problematic in contexts like envi-

ronmental economics, where past environmental conditions affect current environmental outcomes.

To solve this challenge, I developed a new estimator (the DBC estimator) that corrects both

dynamic bias and Nickell bias. The estimator works well even when the number of time periods

is small (fixed-T panels). It provides more accurate estimates of treatment effects by properly
39Examples include Annan and Schlenker [2015], Burke et al. [2015], Cho [2017], Jessoe et al. [2018], Drabo and

Mbaye [2015], Mahajan and Yang [2020], Missirian and Schlenker [2017], Graff Zivin et al. [2018] Garg et al. [2020].
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accounting for the influence of past outcomes. The DBC estimator performs better than alternative

methods, such as instrumental variable techniques, which can suffer from weak instruments and

larger standard errors.

I applied the DBC estimator to study the impact of temperature shocks on GDP, a key question

in environmental economics. The results show that properly accounting for dynamic biases sig-

nificantly changes the estimated effects. For instance, correcting for dynamic biases reduces the

estimated impact of temperature shocks on GDP growth by 10% and on GDP levels by 120%.

This research offers a practical solution for applied researchers dealing with dynamic settings. It

highlights the importance of including past outcomes to avoid large biases in treatment effect esti-

mates. Future work will focus on extending this estimator to more complex models by incorporating

machine learning and adapting it for spatial data, where additional geographic dynamics play an

important role.
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A Dynamic Bias

A.1 Proof Theorem 3.1

Under Assumptions (1), (2), (3) and that V arpDi,tq ą 0 running OLS to estimate the static model

in Equation (13) leads to a biased treatment effect estimator τ̂D. Given that Equation (13) is a

univariate panel regression, I have a simple formula for the OLS solution [Wooldridge, 2010].
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τ̂D “

řN
i“1

řT
t“1CovpD̃i,t, Yi,tq

řN
i“1

řT
t“1 V arpD̃i,tq

“

řN
i“1

řT
t“1CovpD̃i,t, ρ10Yi,t´1 ` τ0Di,t ` εi,tq

řN
i“1

řT
t“1 V arpD̃i,tq

(50)

A.1.1 Numerator

CovpD̃i,t, ρ10Yi,t´1 ` τ0Di,t ` εi,tq “ CovpD̃i,t, ρ10Yi,t´1q
looooooooooomooooooooooon

N.1

`CovpD̃i,t, τ0Di,tq
looooooooomooooooooon

N.2

`CovpD̃i,t, εi,tq
looooooomooooooon

N.3

(51)

N.1 “ CovpD̃i,t, ρ10Yi,t´1q “ ρ10CovpDi,t ´
1

T

T
ÿ

s“1

Di,s, Yi,t´1q

“ ´
ρ10
T

Covp

t´1
ÿ

s“1

Di,s, Yi,t´1q

“ ´
ρ10
T

Covp

t´1
ÿ

s“1

Di,s, τ0

t´2
ÿ

j“0

pρ10qjpDi,t´j´1qq

“ ´
ρ10τ0
T

t´1
ÿ

s“1

CovpDi,s,
t´2
ÿ

j“0

pρ10qjpDi,t´j´1qq

“ ´
ρ10τ0
T

t´1
ÿ

s“1

CovpDi,s, pρ10qt´s´1pDi,sqq

“ ´
ρ10τ0V arpDi,tq

T

t´1
ÿ

s“1

pρ10qt´s´1

(52)

This follows by plugging in for Yi,t´1, which follows from 79. Therefore:

T
ÿ

t“1

CovpD̃i,t, ρ10Yi,t´1q “ ´
ρ10τ0V arpDi,tq

T

„

T

1 ´ ρ10
´

1 ´ ρT10
p1 ´ ρ210q



(53)

The next term in the numerator is:

N.2 “ CovpD̃i,t, τ0Di,tq “ τ0CovpDi,t ´
1

T

T
ÿ

t“1

Di,t, Di,tq

“ τ0CovpDi,t, Di,tq ´ τ0Covp
1

T

T
ÿ

t“1

Di,t, Di,tq

“ τ0

„

1 ´
1

T



V arpDi,tq

(54)
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The final term in the numerator is:

N.3 “ CovpD̃i,t, εi,tq “ 0 (55)

Putting these parts together, and including the outside sums, our full numerator is.

N
ÿ

i“1

T
ÿ

t“1

CovpD̃i,t, Yi,tq “

N
ÿ

i“1

ˆ

Tτ0

„

1 ´
1

T



V arpDi,tq ´
ρ10τ0V arpDi,tq

T

„

T

1 ´ ρ10
´

1 ´ ρT10
p1 ´ ρ210q

˙

“

N
ÿ

i“1

ˆ

Tτ0

„

1 ´
1

T



σ2
i ´

ρ10τ0σ
2
i

T

„

T

1 ´ ρ10
´

1 ´ ρT10
p1 ´ ρ210q

˙

(56)

A.1.2 Denominator

Var
`

Dit ´ D̄i

˘

“ VarpDitq ` VarpD̄iq ´ 2 ¨ CovpDit, D̄iq (57)

where:

VarpDitq “ σ2
i

VarpD̄iq “
σ2
i

T

CovpDit, D̄iq “
σ2
i

T

(58)

Substituting these into the variance formula:

Var
`

Dit ´ D̄i

˘

“ σ2
i `

σ2
i

T
´ 2 ¨

σ2
i

T
“ σ2

i

ˆ

1 ´
1

T

˙

(59)

Hence the denominator is

N
ÿ

i“1

T
ÿ

t“1

V arpD̃i,tq “

N
ÿ

i“1

T
ÿ

t“1

σ2
i

ˆ

1 ´
1

T

˙

(60)
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A.1.3 Combining Numerator and Denominator

τ̂D “

řN
i“1

ˆ

Tτ0
“

1 ´ 1
T

‰

σ2
i ´

ρ10τ0σ2
i

T

„

T
1´ρ10

´
1´ρT10

p1´ρ210q

˙

řN
i“1

řT
t“1 σ

2
i

`

1 ´ 1
T

˘

“ τ0 ´

řN
i“1

ˆ

ρ10τ0σ2
i

T

„

T
1´ρ10

´
1´ρT10

p1´ρ210q

˙

řN
i“1

řT
t“1 σ

2
i

`

1 ´ 1
T

˘

“ τ0 ´

ρ10τ0
T

„

T
1´ρ10

´
1´ρT10

p1´ρ210q



řT
t“1

`

1 ´ 1
T

˘

“ τ0 ´

ρ10τ0
T

„

T
1´ρ10

´
1´ρT10

p1´ρ210q



pT ´ 1q

“ τ0 ´
ρ10τ0

T pT ´ 1q

„

T

1 ´ ρ10
´

1 ´ ρT10
p1 ´ ρ210q



(61)

B Bias Correction Formulas

B.1 Proof for Lemma 4.1

Under Assumptions 2, 3, 4 the following bias correction term is calculated.

bpθ0q “

»

—

—

—

—

–

¨

˚

˚

˚

˚

˝

bρ1pθ0q

bτ pθ0q

bρ2pθ0q

˛

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

fl

“ IE

»

—

—

—

—

–

¨

˚

˚

˚

˚

˝

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0q

1
T

řT
t“1 D̃i,tε̃i,tpθ0q

1
T

řT
t“1 Ỹi,t´1ũi,tpθ0q

˛

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

fl

(62)

There are three expectations that have to be solved in order to calculate bpθ0q. I have to solve for

1) bρ1pθ0q 2) bτ pθ0q 3) bρ2pθ0q. I first solve for bρ1pθ0q “ IEθ0r 1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0qs.

B.1.1 Bias Term 1

Equations (63) to (69) below I outline the general argument for how to derive bρ1pθ0q. Then after

(69) I provide additional detail for each step.
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bρ1pθ0q “ IEθ0

„

1

T

T
ÿ

t“1

Ỹi,t´1ε̃i,tpθ0q



(63)

“ ´IEθ0

„

Ȳi,´1ε̄ipθ0q



(64)

“ ´IEθ0

„

1

T

#

T´2
ÿ

l“0

ˆ l
ÿ

j“0

φj
0

˙

εi,T´1´lpθ0q

+

ε̄ipθ0q



(65)

“ ´
1

T

T´2
ÿ

l“0

ˆ l
ÿ

j“0

φj
0

˙

IEθ0rεi,T´1´lpθ0qε̄ipθ0qs (66)

“ ´
1

T 2

T´2
ÿ

l“0

ˆ l
ÿ

j“0

φj
0

˙

σ2
ε,iT pθ0q (67)

“ ´
1

T 2

T´2
ÿ

l“0

ˆ

1 ´ φl`1

1 ´ φ

˙

σ2
ε,iT pθ0q (68)

“ ´
σ2
ε,iT

T

ˆ

T ´ 1

1 ´ φ
´

φ ´ φT

p1 ´ φq2

˙

(69)

Now I explain the steps in greater detail.

Steps for Line (113)

IEθ0

„

1

T

T
ÿ

t“1

Ỹi,t´1ε̃i,tpθ0q



“ IEθ0

„

1

T

T
ÿ

t“1

pYi,t´1 ´ Ȳi,´1qpεi,tpθ0q ´ ε̄ipθ0qq



(70)

“ IEθ0

„

1

T

T
ÿ

t“1

pYi,t´1 ´ Ȳi,´1qpεi,tpθ0qq



(71)

“ ´IEθ0

„

1

T

T
ÿ

t“1

Ȳi,´1εi,tpθ0q



(72)

“ ´IEθ0

„

Ȳi,´1
1

T

T
ÿ

t“1

εi,tpθ0q



(73)

“ ´IEθ0

„

Ȳi,´1ε̄ipθ0q



(74)

Because of weak indepdence I have that the covariance of Yi,t´1 and εi,t is zero, and the mean of

εi,t is zero. Therefore IEθ0r 1
T

řT
t“1 Yi,t´1εi,ts “ 0.

Steps for Line (65) Here I derive an expression for Ȳi,´1 as a sum of initial and past values.
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I start by first deriving an expression for Yi,t as a sum of initial and past values.

Di,1 “ ci ` ρ2Yi,0 ` ui,1 (75)

Yi,1 “ ai ` ρ1Yi,0 ` τDi,1 ` εi1

“ ai ` ρ1Yi,0 ` τ rci ` ρ2Yi,0 ` ui1s ` εi1

“ ai ` pρ1 ` τρ2qYi,0 ` τpci ` ui1q ` εi1

(76)

Yi,2 “ ai ` pρ1 ` τρ2qYi,1 ` τpci ` ui1q ` εi2

“ ai ` pρ1 ` τρ2q

„

ai ` pρ1 ` τρ2qYi,0 ` τpci ` ui0q ` εi1



` τpci ` ui1q ` εi2

(77)

Notice the recursive nature in the terms, use this pattern to generalize Yi,t:

Yi,t “ ai ` pρ1 ` τρ2qYi,t´1 ` τpci ` ui,tq ` εi,t (78)

Generalizing this pattern for any t:

Yi,t “ ai

t´1
ÿ

j“0

pρ1 ` τρ2qj ` pρ1 ` τρ2qtYi,0 ` τ
t´1
ÿ

j“0

pρ1 ` τρ2qjpci ` ui,t´jq

`

t´1
ÿ

j“0

pρ1 ` τρ2qjεi,t´j

(79)

Recall φ0 “ pρ10 ` τ0ρ20q. The expression for Ȳi,´1 follows:

Ȳi,´1 “
1

T

„ˆ T´2
ÿ

l“0

pT ´ l ´ 1qφl
0

˙

ai `

ˆ T´1
ÿ

l“0

φl
0

˙

Yi,0 `

T´2
ÿ

l“0

ˆ l
ÿ

j“0

φj
0

˙

τ0pci ` ui,T´1´lq (80)

`

T´2
ÿ

l“0

ˆ l
ÿ

j“0

φj
0

˙

εi,T´1´l



(81)

Steps for Line (67) Follows by the definition of variance. I use that the noise is homoscedastic

over time, but heteroscedastic across individuals.

Steps for Line (68) Follows by rules of genometrics sums.
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B.1.2 Bias Term 2

The second bias term follows almost an identical argument to what was outlined in Section B.1.1

for Term 1.

bτ pθ0q “ IEθ0

„

1

T

T
ÿ

t“1

D̃i,tε̃i,tpθ0q



(82)

“ ´ρ2
σ2
ε,iT

T

ˆ

T ´ 1

1 ´ φ
´

φ ´ φT

p1 ´ φq2

˙

(83)

It follows from the fact that.

D̄i “ ρ2Ȳi,´ ` ēi (84)

Since Ȳi,´ is solved above, it can be plugged in. The same exogeneity conditions hold.

B.1.3 Bias Term 3

The third bias term follows almost an identical argument to what was outlined in Section B.1.1 for

Term 1. Again, since Ȳi,´ is solved above, it can be plugged in. The same exogeneity conditions

hold.

bρ2pθ0q “ IEθ0

„

1

T

T
ÿ

t“1

Ỹi,t´1ũi,tpθ0q



(85)

“ ´τ0
σ2
u,iT

T

ˆ

T ´ 1

1 ´ φ
´

φ ´ φT

p1 ´ φq2

˙

(86)

B.2 Interaction Model

Thie bias correction for the more general model is proven here.
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bpθ0q “

»

—

—

—

—

—

—

—

—

—

—

–

bρ1pθ0q

bτcpθ0q

bρ2pθ0q

bβ1pθ0q

bβ2pθ0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ IE

»

—

—

—

—

—

—

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθ0q

1
T

řT
t“1pD̃i,tW

c
i,tqε̃i,tpθ0q

1
T

řT
t“1 Ỹi,t´1ũi,tpθ0q

1
T

řT
t“1 X̃1,i,tε̃i,tpθ0q

1
T

řT
t“1 X̃2,i,tũi,tpθ0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(87)

The outcome model has interactions with strictly exogenous covariates. Let there be Nc different

covariates W 1
i,t,W

2
i,t, . . . ,W

Nc
i,t that interact with treatment. The strictly exogenous regressors that

do not interact with treatment are denoted by Xi,t.

The more general model that allows for interactions is given by:

Yi,t “ ai `

Nc
ÿ

c“1

τcpDi,t ¨ W c
i,tq ` β1X1,i,t ` ρ1Yi,t´1 ` εi,t (88)

Di,t “ ci ` ρ2Yi,t´1 ` β2X2,i,t ` ui,t (89)

Substitute Di,t into the outcome equation:

Yi,t “ ai `

Nc
ÿ

c“1

τc
`

pci ` ρ2Yi,t´1 ` β2X2,i,t ` ui,tq ¨ W c
i,t

˘

` β1X1,i,t ` ρ1Yi,t´1 ` εi,t (90)

Distribute τc and group terms by Yi,t´1:

Yi,t “ ai `

Nc
ÿ

c“1

τcciW
c
i,t `

Nc
ÿ

c“1

τcρ2Yi,t´1W
c
i,t

`

Nc
ÿ

c“1

τcβ2X2,i,tW
c
i,t `

Nc
ÿ

c“1

τcui,tW
c
i,t

` β1X1,i,t ` ρ1Yi,t´1 ` εi,t (91)
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Grouping by Yi,t´1: Let:

γt “ ρ1 `

Nc
ÿ

c“1

τcρ2W
c
i,t (92)

αt “

Nc
ÿ

c“1

τcui,tW
c
i,t (93)

Then:

Yi,t “ ai `

Nc
ÿ

c“1

τcciW
c
i,t ` γtYi,t´1

`

Nc
ÿ

c“1

τcβ2X2,i,tW
c
i,t ` αt ` β1X1,i,t ` εi,t (94)

Iterate the equation backwards: Substitute Yi,t´1 in terms of Yi,t´2:

Yi,t´1 “ ai `

Nc
ÿ

c“1

τcciW
c
i,t´1 ` γt´1Yi,t´2

`

Nc
ÿ

c“1

τcβ2X2,i,t´1W
c
i,t´1 ` αt´1 ` β1X1,i,t´1 ` εi,t´1 (95)

So:

Yi,t “ ai `

Nc
ÿ

c“1

τcciW
c
i,t ` γt

ˆ

ai `

Nc
ÿ

c“1

τcciW
c
i,t´1 ` γt´1Yi,t´2

`

Nc
ÿ

c“1

τcβ2X2,i,t´1W
c
i,t´1 ` αt´1 ` β1X1,i,t´1 ` εi,t´1

˙

`

Nc
ÿ

c“1

τcβ2X2,i,tW
c
i,t ` αt ` β1X1,i,t ` εi,t (96)
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Continue substituting backward iteratively until reaching Yi,0:

Yi,t “

˜

t´1
ź

j“0

γt´j

¸

Yi0

`

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j

¸˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k

`

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k ` αt´k ` β1X1,i,t´k ` εi,t´k

¸

(97)

Summarize the final expression for Yi,t:

Yi,t “

˜

t´1
ź

j“0

γt´j

¸

Yi0

`

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j

¸˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k

`

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k `

Nc
ÿ

c“1

τcui,t´kW
c
i,t´k ` β1X1,i,t´k ` εi,t´k

¸

(98)

Expression plugging in for variables:

1

T

T
ÿ

t“1

Yi,t “
1

T

T
ÿ

t“1

˜˜

t´1
ź

j“0

γt´j

¸

Yi0

`

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j

¸˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k `

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k

`

Nc
ÿ

c“1

τcui,t´kW
c
i,t´k ` β1X1,i,t´k ` εi,t´k

¸¸

(99)

Expression for D ˆ W Average: Similarly, for Di,tW
c
i,t:

Di,tW
c
i,t “ pci ` ρ2Yi,t´1 ` β2X2,i,t ` ui,tqW

c
i,t (100)
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Substitute Yi,t´1:

Di,tW
c
i,t “

˜

ci ` ρ2

˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´1 ` γt´1Yi,t´2

`

Nc
ÿ

c“1

τcβ2X2,i,t´1W
c
i,t´1 ` αt´1 ` β1X1,i,t´1 ` εi,t´1

¸

`β2X2,i,t ` ui,tqW
c
i,t (101)

Iterating backward:

Di,tW
c
i,t “

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j´1

¸˜

ciW
c
i,t´k ` ρ2

˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k

`

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k ` αt´k ` β1X1,i,t´k ` εi,t´k

¸¸

(102)

Summarizing the result:

Di,tW
c
i,t “

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j´1

¸˜

ciW
c
i,t´k ` ρ2

˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k

`

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k ` αt´k ` β1X1,i,t´k ` εi,t´k

¸¸

(103)

Therefore the average can be written as:

1

T

T
ÿ

t“1

Di,tW
c
i,t “

1

T

T
ÿ

t“1

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j´1

¸˜

ciW
c
i,t´k ` ρ2

˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k

`

Nc
ÿ

c“1

τcβ2X2,i,t´kW
c
i,t´k ` αt´k ` β1X1,i,t´k ` εi,t´k

¸¸

(104)

Therefore it follow by the same argument outlined in Appendix B.1. Here φ “ ρ1 `
řNc

c“1 τcρ2µc.
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Here µc is the mean of covariate W c

bpθ0q “

»

—

—

—

—

—

—

—

—

—

—

–

bρ1pθ0q

bτcpθ0q

bρ2pθ0q

bβ1pθ0q

bβ2pθ0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´
σ2
ε,iT

T

ˆ

T´1
1´φ ´

φ´φT

p1´φq2

˙

´ρ2µc
σ2
ε,iT

T

ˆ

T´1
1´φ ´

φ´φT

p1´φq2

˙

´p
řNc

c“1 τcµcq
σ2
u,iT

T

ˆ

T´1
1´φ ´

φ´φT

p1´φq2

˙

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(105)

B.3 Algebra interaction term

Note:

Ȳi,´1 “
1

T

T
ÿ

t“1

Yi,t “
1

T

T
ÿ

t“1

˜

t´1
ź

j“0

γt´j

¸

Yi0

`
1

T

T
ÿ

t“1

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j

¸˜

ai `

Nc
ÿ

c“1

τcciW
c
i,t´k `

Nc
ÿ

c“1

τcui,t´kW
c
i,t´k ` βXi,t´k ` εi,t´k

¸

(106)

We want to find IEθ0

„

Ȳi,´1ε̄ipθ0q



.

The part of Ȳi,´1 we care about is 1
T

řT
t“1

řt´1
k“0

´

śk´1
j“0 γt´j

¯

εi,t´k

IEθ0

„

 

Ȳi,´1

(

ε̄ipθ0q



“ IEθ0

„

#

1

T

T
ÿ

t“1

t´1
ÿ

k“0

˜

k´1
ź

j“0

γt´j

¸

εi,t´k

+

ε̄ipθ0q

 (107)

Let us consider a simple example of the expression above.

IE

„ 3
ÿ

t“1

tAtBtuC



“ IE

„

tA1B1 ` A2B2 ` A3B3uC



“ IE

„

tA1B1C ` A2B2C ` A3B3Cu



“ IE

„

A1B1C



` IE

„

A2B3C



` IE

„

A3B3C



(108)

53



Consider IE

„

A1B1C



. In the first line below I use the fact that A is orthogonal to B and C.

IE

„

A1B1C



“ IE

„

A1



ˆ IE

„

B1C



(109)

In our case

IErAts „ IEr

˜

k´1
ź

j“0

γt´j

¸

s (110)

Below the first line uses the definition of γt´j . The second line uses the fact that the covariates are

strictly exogenous variables that are iid across time and unit, so they are independent. The third

line uses the fact that the expectation of a covaraiate is the same across time.

IE

„ k´1
ź

j“0

γt´j



“ IE

„ k´1
ź

j“0

#

ρ1 `

Nc
ÿ

c“1

τcρ2W
c
i,t´j

+



“

k´1
ź

j“0

#

IE

„

ρ1 `

Nc
ÿ

c“1

τcρ2W
c
i,t´j



+

“

k´1
ź

j“0

#

ρ1 `

Nc
ÿ

c“1

τcρ2ErW c
i,t´js

+

“

k´1
ź

j“0

#

ρ1 `

Nc
ÿ

c“1

τcρ2µc

+

“

#

ρ1 `

Nc
ÿ

c“1

τcρ2µc

+k

“ φk

(111)

Therefore we have
IEθ0

„

 

Ȳi,´1

(

ε̄ipθ0q



“
1

T

T
ÿ

t“1

t´1
ÿ

k“0

´

φk
¯

IEθ0rεi,t´k ε̄ipθ0qs

(112)

IEθ0

„

 

Ȳi,´1

(

ε̄ipθ0q



“
1

T

T´2
ÿ

l“0

l
ÿ

j“0

`

φj
˘

IEθ0rεi,T´1´lε̄ipθ0qs

(113)
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C Normality of bias-corrected Estimator

Proof for Theorem 4.2.

C.1 Gradient

The gradient of the bias-corrected estimator is the following.

∇θm
DBC
NT pθq “

1

N

N
ÿ

i“1

∇θm
DBC
iT pθq (114)

Where the individual moment gradient is given by:

∇θm
DBC
iT pθq “

¨

˚

˚

˚

˚

˝

∇ρ1m
DBC
ρ1,iT

pθq ∇τm
DBC
ρ1,iT

pθq ∇ρ2m
DBC
ρ1,iT

pθq

∇ρ1m
DBC
τ,iT pθq ∇τm

DBC
τ,iT pθq ∇ρ2m

DBC
τ,iT pθq

∇ρ1m
DBC
ρ2,iT

pθq ∇τm
DBC
ρ2,iT

pθq ∇ρ2m
DBC
ρ2,iT

pθq

˛

‹

‹

‹

‹

‚

(115)

has the elements

∇ρ1m
DBC
ρ1,iT pθq “ ´

1

T

T
ÿ

t“1

pỸi,t´1qỸi,t´1 ´ ∇Φpθqσ̂2
ε,iT pθq ´ Φpθq∇ρ1 σ̂

2
ε,iT pθq, (116)

∇τm
DBC
ρ1,iT pθq “ ´

1

T

T
ÿ

t“1

pỸi,t´1qDi,t ´ ρ2∇Φpθqσ̂2
ε,iT pθq ´ Φpθq∇τ σ̂

2
ε,iT pθq, (117)

∇ρ2m
DBC
ρ1,iT pθq “ ´τ∇Φpθqσ̂2

ε,iT pθq ´ Φpθq∇ρ2 σ̂
2
ε,iT pθq

“ ´τ∇Φpθqσ̂2
ε,iT pθq,

(118)

∇ρ1m
DBC
τ,iT pθq “ ´

1

T

T
ÿ

t“1

pD̃i,t´1qYi,t´1 ´ ρ2∇Φpθqσ̂2
ε,iT pθq ´ ρ2Φpθq∇ρ1 σ̂

2
ε,iT pθq, (119)

∇τm
DBC
τ,iT pθq “ ´

1

T

T
ÿ

t“1

pD̃i,t´1qDi,t ´ ρ22∇Φpθqσ̂2
ε,iT pθq ´ ρ2Φpθq∇τ σ̂

2
ε,iT pθq (120)
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∇ρ2m
DBC
τ,iT pθq “ ´Φpθqσ̂2

ε,iT pθq ´ ρ2τ∇Φpθqσ̂2
ε,iT pθq ´ ρ2Φpθq∇ρ2 σ̂

2
ε,iT pθq

“ ´Φpθqσ̂2
ε,iT pθq ´ τ∇Φpθqσ̂2

ε,iT pθq,

(121)

∇ρ1m
DBC
ρ2,iT pθq “ ´τ∇Φpθqσ̂2

u,iT pθq ´ τΦpθq∇ρ1 σ̂
2
u,iT pθq

“ ´τ∇Φpθqσ̂2
u,iT pθq

(122)

∇τm
DBC
ρ2,iT pθq “ ∇ρ2m

DBC
τ,iT pθq “ ´Φpθqσ̂2

u,iT pθq ´ ρ2τ∇Φpθqσ̂2
u,iT pθq ´ τΦpθq∇τ σ̂

2
u,iT pθq

“ ´Φpθqσ̂2
ε,iT pθq ´ τ∇Φpθqσ̂2

u,iT pθq,

(123)

∇ρ2mρ2,iT pθq “ ´
1

T

T
ÿ

t“1

pỸi,t´1qYi,t´1 ´ τ2∇Φpθqσ̂2
u,iT pθq ´ τΦpθq∇ρ2 σ̂

2
u,iT pθqpθq, (124)

where

∇Φpθq “ ´T´2
T´2
ÿ

l“1

l
ÿ

j“1

lpρ1 ` τρ2ql´1 (125)

Φpθq “ ´T´2
T´2
ÿ

l“1

l
ÿ

j“1

pρ1 ` τρ2ql (126)

∇ρ1 σ̂ε,iT pθq “
2

T ´ 1

T
ÿ

t“1

pỸi,t´1qεi,tpθq

IEr∇ρ1 σ̂ε,iT pθqs “ 2Φpθqσ2
ε,iTT {pT ´ 1q

(127)

∇τ σ̂ε,iT pθq “
2

T ´ 1

T
ÿ

t“1

pD̃i,t´1qεi,tpθq

IEr∇τ σ̂ε,iT pθqs “ 2ρ2Φpθqσ2
ε,iTT {pT ´ 1q

(128)

∇ρ2 σ̂ε,iT pθq “ 0, (129)
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∇ρ1 σ̂u,iT pθq “ 0, (130)

∇τ σ̂u,iT pθq “ 0, (131)

∇ρ2 σ̂u,iT pθq “
2

T ´ 1

T
ÿ

t“1

pỸi,t´1qui,tpθq “ 2τΦpθqσ2
u,iTT {pT ´ 1q (132)

C.2 GMM Normality

C.2.1 Consistency

Given the assumptions of Theorem 4.2, it follows by Theorem 14.1 from Wooldridge [2010] that

the GMM estimator is consistent.

Theorem 14.1 from Wooldridge [2010] requires that a) Θ Ă R3 is compact, which is satisfied by

assumption b) For each θ P Θ, mDBCp¨, θq is Borel measurable on Z, which is satisfied by the

moments being a polynomial in data and having compact parameters c) for each z P Z, mDBCpz, ¨q

is continuous on Θ. This follows from the fact moments are a polynomial in the random variables

and 1{p1´φq ă 1{δs d) |mDBC
j pz, θq| ď bpzq for all θ P Θ and j “ 1, 2, 3 where bp¨q is a nonnegative

function on Z such that Erbpzqs ă 8, this follows from the assumption on the bounded moments of

the data and that the moments on only quadratic in the random variables e) The GMM weighting

matrix Ξ̂
p
ÝÑ Ξ0 a positive definite weighting matrix, in my case the weighting matrix is just the

identity matrix so this is satisfied, f) θ0 is the unique solution to the problem, which the global

identification condition that is satisfied by assumption.

Therefore a random vector θ̂ exists that solves Equation (34) and θ̂
p
ÝÑ θ0.

C.2.2 Normality

Given the assumptions of Theorem 4.2, it follows by Theorem 14.2 from Wooldridge [2010] that

the GMM estimator is asymptotically normal.

Theorem 14.2 from Wooldridge [2010] requires a) θ0 is in the interior of Θ, which is satisfied by
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assumption b) mDBCpz, ¨q is continuously differentiable on the interior of Θ for all z P Z, this holds

because the moments are ratios of polynomials with denominators bounded away from zero by the

stationarity assumption c) each element of mDBCpz, θ0q has finite second moment, which follows

from assumption bounding the moments of the data d) each element of ∇mDBCpz, θq is bounded

in absolute value by a function bpzq, where Erbpzqs ă 8 because the derivative of the polynomial

is also bounded e) Er∇mDBCpz, θqs is full rank follows by assumption.

Therefore, it follows that the limiting distribution of θ̂ follows the equation given in Theorem 4.2.

?
Npθ̂DBC ´ θ0q

d
ÝÑ Np0, rΣT ` BT pθ0qs´1ST pθ0qrΣT ` BT pθ0qs´1 (133)

With ST pθ0q “ plimNÑ8
1
N

řN
i“1m

DBC
iT mDBC

iT ,

ΣT “ plim
NÑ8

1

NT

N
ÿ

i“1

T
ÿ

t“1

»

—

—

—

—

–

Ỹ 2
i,t´1 Ỹi,t´1D̃i,t 0

D̃i,tỸi,t´1 D̃2
i,t 0

0 0 Ỹ 2
i,t´1

fi

ffi

ffi

ffi

ffi

fl

(134)

BT pθq “

»

—

—

—

—

–

∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 ρ2p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ´τ∇Φpθqσ2
ε,i

ρ2p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ρ22p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ´Φpθqσ2
ε,iT ´ τ∇Φpθqσ2

ε,iT

´τ∇Φpθqσ2
u,iT ´Φpθqσ2

u,iT ´ τ∇Φpθqσ2
u,iT τ2p∇Φpθqσ2

u,i ´
2Φpθq2σ2

u,iT

T´1 q

fi

ffi

ffi

ffi

ffi

fl

(135)

C.3 Local Identification

Let θ0 P Θ Ă Rp be the true parameter value. Suppose we have a set of moment conditions

ErmDBCpθqs “ 0, where m : Rd ˆ Θ Ñ Rq is a vector-valued function. The parameter θ0 is locally

identified if the following conditions hold:

1. Continuity and Differentiability:

• The moment condition function mDBCpθq is continuously differentiable with respect to

θ in a neighborhood of θ0.
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2. Rank Condition:

• The Jacobian matrix JDBC
m pθq of the expected moment condition function with respect

to θ, JDBC
m pθq “ B

BθErmDBCpθqs
ˇ

ˇ

θ“θ0
, has full column rank p (where p is the number of

parameters).

Recall that the bias-corrected moments are the orginal OLS moment conditions minus the bias

correction.

mDBCpθq :“ mpθq ´ bpθq “

»

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,t ´ bρ1,iT pθq

1
T

řT
t“1 D̃i,tε̃i,t ´ bτ,iT pθq

1
T

řT
t“1 Ỹi,t´1ũi,t ´ bρ2,iT pθq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1
T

řT
t“1 Ỹi,t´1ε̃i,tpθq ´

´σ̂ε,iT pθq2

T

ˆ

T´1
1´φpθq

´
φpθq´φpθqT

p1´φpθqq2

˙

1
T

řT
t“1 D̃i,tε̃i,tpθq ´ ρ2

´σ̂ε,iT pθq2

T

ˆ

T´1
1´φpθq

´
φpθq´φpθqT

p1´φpθqq2

˙

1
T

řT
t“1 Ỹi,t´1ũi,tpθq ´ τ

´σ̂u,iT pθq2

T 2

ˆ

T´1
1´φpθq

´
φpθq´φpθqT

p1´φpθqq2

˙

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(136)

In this section I provide conditions under which the Rank Condition holds. For the original OLS

moment mpθq the corresponding Jacobian is Jmpθq :“ ∇θmpθq. These are the original OLS mo-

ments, and therefore IErJmpθqs is full rank when the columns of regressors are linearly independent.

For the bias correction Jbpθq :“ ∇θbpθq. Due to linarity I have IErJDBC
m pθqs “ IErJmpθqs´IErJbpθqs.

Therefore as long as columns of the 1) regressors are linearly independent, and 2) subtracting out

IErJbpθqs does not ruin the full rank of IErJmpθqs, then IErJDBC
m pθqs has full column rank. IErJbpθqs

will not break the full rank condition as long as it is ”small enough”, formalized below.

Proof. In order to argue that A ´ B is full rank, we need to argue that there does not exist an x

such that pA ´ Bqx “ 0.

This is true if

x1pA ´ Bqx ą c}x}2 (137)

which is the same as saying
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x1pA1 ´ B1qx ą c}x}2 (138)

which is the same as saying

x1pA ´
B ` B1

2
qx ě c}x}2 (139)

this will hold if

λmaxp
B ` B1

2
q ď λminpAq (140)

Therefore we have full rank if

λmaxp
IErJbpθqs ` IErJbpθqs1

2
q ď λminpIErJDBC

m pθqsq (141)

Jmpθq “

»

—

—

—

—

–

´ 1
T

řT
t“1 Ỹ

2
i,t´1 ´ 1

T

řT
t“1 Ỹi,t´1D̃i,t 0

´ 1
T

řT
t“1 D̃i,tỸi,t´1 ´ 1

T

řT
t“1 D̃

2
i,t 0

0 0 ´ 1
T

řT
t“1 Ỹ

2
i,t´1

fi

ffi

ffi

ffi

ffi

fl

(142)

IErJbpθqs “

»

—

—

—

—

–

∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 ρ2p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ´τ∇Φpθqσ2
ε,i

ρ2p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ρ22p∇Φpθqσ2
ε,i ´

2Φpθq2σ2
ε,iT

T´1 q ´Φpθqσ2
ε,iT ´ τ∇Φpθqσ2

ε,iT

´τ∇Φpθqσ2
u,iT ´Φpθqσ2

u,iT ´ τ∇Φpθqσ2
u,iT τ2p∇Φpθqσ2

u,i ´
2Φpθq2σ2

u,iT

T´1 q

fi

ffi

ffi

ffi

ffi

fl

(143)
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D Additional Simulations

D.1 Additional Comparison of Dynamic vs Nickell bias

Here I provide additional simulation results comparing dynamic and Nickell bias from Section 5.1.

I plotted treatment estimates for a wide variety of DGP’s in Figure 4.

−0.5 0.5

10 20 30 40 50 10 20 30 40 50
−0.6

−0.3

0.0

0.3

Number time periods

va
lu

e

−0.9 −0.2 0.2 0.9 lag nolag

Figure 4: Line type represents different values of ρ10. Line color represents whether the model was
estimates with an outcome lag or not. The left column contains results when the true τ0 “ ´.5
and the right column contains results when τ0 “ .5.

E Additional Empirical Results

E.1 Replicating Dell et al. [2012]

I replicate column 2 of Table 2 in Dell et al. [2012] and obtain the same results. My results are given

in Table 6 column 3. In this Table 6, I also show in column 4 how the treatment effect changes once

you control for lagged GDP Growth. The change the coefficient in Temperature x Poor Country

changes 9% and is significantly different at the p ă .1 level. I tested the difference in coefficients

by using the clustered bootstrap.
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Table 6

Outcome variable: Outcome variable:
GDP Level GDP Growth

(1) (2) (3) (4)

Temperature 118.568 82.071˚˚ 0.261 0.261
(100.725) (32.139) (0.257) (0.254)

Temperature x Poor Country 192.550 ´88.364˚˚ ´1.655˚˚˚ ´1.511˚˚˚

(162.740) (51.961) (0.415) (0.413)

Outcome Lag 0.922˚˚˚ 0.192˚˚˚

(0.005) (0.015)

Controls Yes Yes Yes Yes

Observations 4,654 4,629 4,924 4,795
R2 0.941 0.994 0.223 0.251
Adjusted R2 0.935 0.993 0.150 0.179

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

E.2 Using growth vs levels in outcomes

Empirically, it is often observed that countries with lower initial GDP levels tend to have higher

growth rates, which would suggest that GDP levels across countries should converge over time

[Barro and Sala-i Martin, 1992]. By focusing on growth rates rather than levels, you might incor-

rectly suggest that these countries are diverging when, in fact, they could be converging in terms of

absolute GDP levels. Using GDP growth as the dependent variable in regressions can lead to mis-

leading interpretations about the relative economic performance of countries, potentially suggesting

divergence when, in reality, countries might be converging in terms of GDP levels.

Still, in practice, it is common to study GDP growth. I formalize the econometric problems that

arise. Consider following simple model for country GDP. This comes from Solow [1956].

Yi,t “ ai ` ρ0Yi,t´1 ` τ0Di,t ` εi,t (144)

Where we say treatment Di,t is temperature, and it is random conditional on fixed effect. The error
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terms in both models are random idd shocks and εi,t and ui,t.

Di,t “ ai ` ui,t (145)

Let’s say we want to run the regression using ∆Yi,t as the outcome.

∆Yi,t “ Yi,t ´ Yi,t´1 “ ρ0pYi,t´1 ´ Yi,t´2q ` τ0pDi,t ´ Di,t´1q ` pεi,t ´ εi,t´1q (146)

What is the causal object of interest? The impact of current temperature on growth.

APD “
B∆Yi,t
BDi,t

“
Bρ0pYi,t´1 ´ Yi,t´2q ` τ0pDi,t ´ Di,t´1q ` pεi,t ´ εi,t´1q

BDi,t

“ τ0

(147)

So the treatment effect is τ0.

Let’s create an OLS model to estimate this effect.

∆Yi,t “ ci ` βDi,t ` ei,t (148)

Does β̂ provide an unbiased estimate for τ0? Recall that running OLS with fixed effects dummies

is the same as running the within-trandformed regression.

∆Ỹi,t “ βD̃i,t ` ẽi,t (149)

β̂ “
CovpD̃i,t,∆Ỹi,tq

V arpD̃i,tq
(150)

Let us unpack this .
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CovpD̃i,t,∆Ỹi,tq

V arpD̃i,tq
“

CovpD̃i,t, ρ0pỸi,t´1 ´ Ỹi,t´2q ` τ0pD̃i,t ´ D̃i,t´1q ` pε̃i,t ´ ε̃i,t´1qq

V arpD̃i,tq

“
CovpD̃i,t, ρ0pỸi,t´1 ´ Ỹi,t´2q ` τ0pD̃i,t ´ D̃i,t´1qq

V arpD̃i,tq

“ τ0 `
CovpD̃i,t, ρ0pỸi,t´1 ´ Ỹi,t´2q ´ τ0pD̃i,t´1qq

V arpD̃i,tq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

bias

(151)

So this bias is a type of dynamic bias. For now, I call this transformation bias, as it arises from

transforming the outcome variable before running the fixed effects model.

E.3 Replicating Annan and Schlenker [2015]

In this subsection, I replicate the findings of Annan and Schlenker [2015], which examine the impact

of federal crop insurance subsidies on agricultural outcomes. The results are given in Table 7. The

treatment variable of interest in this paper is “frac:ddayHot”. This variable is the interaction of

the insured fraction with exposure to hot days. In their original analysis, they used a static panel

model that did not account for past outcomes. However, controlling for past outcomes is critical

in settings where dynamic relationships are likely to exist, as previous outcomes can have a direct

influence on current results.

In my replication, I modify their approach by introducing past outcomes into the model. The results

show that the estimated treatment effects double when past outcomes are properly accounted for.

This increase demonstrates the importance of controlling for dynamics in panel data settings.

Failure to do so can lead to biased estimates.

E.4 Endogenous Treatment

I repeat the same simulation exercise as in Section 2, but update the true model. The true model

is now given in Equation (152). In this model I make treatment, Tempi,t, a function of the past

outcome, GDPi,t´1. Therefore our model has a new parameter ρ20 which controls how much past

GDP impacts temperature.40

40Most of the environmental literature does not think that past GDP impacts temperature, and I use setting mostly
to illustrate my point on endogenous treatment. However, some papers discuss how economic growth, reflected in
GDP, often correlates with increased industrial activity, energy consumption, and transportation. Historically, this
has led to higher emissions of greenhouse gases (GHGs) such as carbon dioxide (CO2), which contribute to global
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Table 7

Dependent variable:

yield_log

(1) (2)

frac 0.0001 0.020
(0.035) (0.036)

ddayMod 0.430˚˚˚ 0.420˚˚˚

(0.017) (0.017)

ddayHot ´0.619˚˚˚ ´0.633˚˚˚

(0.010) (0.011)

prec 1.498˚˚˚ 1.560˚˚˚

(0.067) (0.069)

prec2 ´1.016˚˚˚ ´1.044˚˚˚

(0.049) (0.051)

lag_Y_log 0.063˚˚˚

(0.004)

frac:ddayMod 0.008 0.004
(0.013) (0.013)

frac:ddayHot 0.046˚˚˚ 0.070˚˚˚

(0.015) (0.015)

frac:prec ´0.153 ´0.188˚

(0.106) (0.108)

frac:prec2 0.142˚ 0.154˚

(0.079) (0.080)

Observations 47,343 45,488
R2 0.736 0.738
Adjusted R2 0.725 0.727
Residual Std. Error 0.176 (df = 45447) 0.175 (df = 43638)

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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True Model with Endogenous Treatment: GDPi,t “ ai ` τ0Tempi,t ` ρ10GDPi,t´1 ` εi,t,

Tempi,t “ ai ` ρ20GDPi,t´1 ` ui,t.

(152)

For a simulation, I add just a little bit of endogeneity and set ρ20 “ .1. The bias only gets larger

the larger the absolute value of ρ20 is. Note in the plot, for the case of ρ10 “ .9, the dynamic bias

was so large it was omitted from the plot as it was much larger than all other biases. The plot of

the bias is given in Figure 5.
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Figure 5: Bias of three different models.

warming [Nordhaus, 1992].
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F ML Extension

F.1 Problem setup

Data

Wi,t “ pYi,t, Yi,t´1, Di,t, Xi,tq (153)

Wi “ pW1, ¨ ¨ ¨ ,WT q (154)

Ỹi,t “ Yi,t ´
1

T

ÿ

t

Yi,t (155)

Model setup

Yi,t “ ai ` θ0,1Yi,t´1 ` θ0,2Di,t ` θ0,3Xit ` εi,t (156)

Di,t “ ci ` θ0,4Yi,t´1 ` ui,t (157)

Let θ0,3 represent a high-dimensional component, while the endogenous parameters θ0,1, θ0,2,θ0,4

are low-dimensional.

The true parameter vector is θ0 :“ pθ0,1, θ0,2, θ0,3, θ0,4q.

The parameter of interest, θ0,2, corresponds to the treatment effect. The first equation (Equation

(??)) represents the conditional expectation function (CEF), and the second equation (Equation

(??)) represents the propensity function.

To implement Double Machine Learning (DML), I follow a two-stage process. In the first stage, I

estimate the CEF and the propensity functions, which involves estimating the full parameter vector

θ0. This step is critical, as it reduces the high-dimensional problem to manageable components. I

rely on machine learning algorithms for flexible, consistent estimation of these nuisance parameters.

In the second stage, I use the first-stage estimates to construct a double-robust moment function.

This moment is designed to be consistent, even if some of the first-stage estimates are slightly

misspecified. The double-robust nature of DML ensures that the treatment effect θ0,2 can still be

consistently estimated, provided that either the CEF or propensity function is estimated accurately.

Nickell bias prevents the consistent estimation of first stage using Lasso. To obtain consistent
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estimates, I use Nickell-bias-corrected moments with Regularized GMM (RGMM) instead of tra-

ditional Lasso. I outline the proof for the rates of RGMM in my setting to determine the rates of

the first-stage function estimates.

Moment Conditions Note these are moments for one unit (average over time).

g1pWi, θq “
1

T

T
ÿ

i“1

Ỹi,t´1epθq ´ epθq2 ¨ Cpφq (158)

g2pWi, θq “
1

T

T
ÿ

i“1

D̃i,tepθq ´ epθq2 ¨ θ0,4 ¨ Cpφq (159)

g3pWi, θq “
1

T

T
ÿ

i“1

X̃i,tepθq (160)

g4pWi, θq “
1

T

T
ÿ

i“1

Ỹi,t´1upθq ´ upθq2 ¨ θ0,2 ¨ Cpφq (161)

gpWi, θq “ rg1pWi, θq, g2pWi, θq, g3pWi, θq, g4pWi, θqs (162)

Where

epθq “ pỸi,t ´ θ1Ỹi,t´1 ´ θ2D̃i,t ´ θ3X̃i,tq (163)

upθq “ pD̃i,t ´ θ4Ỹi,t´1q (164)

Cpφq “
1

p1 ´ φqT
p1 ´

1 ´ φT

T p1 ´ φq
q (165)

φpθq “ θ1 ` θ2 ¨ θ4 (166)
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Averages Define the empirical moment average and population expectations as.

ĝpθq “
1

N

N
ÿ

i“1

gpWi, θq (167)

gpθq “ IErgpWi, θqs (168)

F.2 RGMM

min
θ“Θ

}θ}1 : }ĝpθq}8 ď λ (169)

Where λ is our regularization parameter. I only regularize the high dimensional parameter θ3.

F.3 Rates for RGMM problem

I require sufficiently fast rates for my first-stage estimation. In this stage, I aim to estimate θ0, as

this allows me to construct consistent estimates of the conditional expectation function (CEF) and

the propensity function.

My goal is to achieve a rate comparable to that of classical Lasso, but in the context of my

Regularized GMM (RGMM) problem. Belloni et al. [2018] provide conditions and corresponding

rates for RGMM when the moments possess an index structure. However, my moments do not

naturally follow this structure.

To address this, I condition on a low-dimensional set of parameters, specifically θ1, θ2, and θ4.

After this conditioning, the conditional moment exhibits the required index structure. This allows

me to apply the results from Belloni et al. [2018] to determine the rate for my high-dimensional

parameter, θ3, as a function of the low-dimensional parameters.

F.4 Steps

1. Create a grid with K points over the parameters θ1, θ2, and θ4, which are the endogenous

and low-dimensional parameters. For now, assume this grid is fixed (i.e., not increasing in

size).
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2. Select a point on the grid and fix the values of the parameters at this point. Denote this

point as pθk1 , θ
k
2 , θ

k
4q.

3. Construct a new moment equation using these fixed values. This modified moment equation

will still be a function of θ3. For example, consider the moment equation for θ1.

g1pWi, θ3q “
1

T

T
ÿ

i“1

Ỹi,t´1epθq ´ epθq2 ¨
1

p1 ´ φqT
p1 ´

1 ´ φT

T p1 ´ φq
q (170)

Where

epθq “ pỸi,t ´ θk1 Ỹi,t´1 ´ θk2D̃i,t ´ θ3X̃i,tq (171)

φ “ θk1 ` θk2 ¨ θk4 (172)

4. Once θk1 , θk2 , and θk4 are fixed, the function φ becomes fixed and is treated as a constant,

denoted Ck
φ.

g1pWi, θ3q “
1

T

T
ÿ

i“1

Ỹi,t´1epθq ´ epθq2 ¨ Ck
φ (173)

5. This allows me to express the moment equation in index form.

g1pWi, θ3q “ m̃pWi, ZupjqpW q1vupjqq (174)

m̃pWit, ZupjqpWitq
1vupjqq “

1

T

T
ÿ

i“1

Ỹi,t´1ZupjqpWitq
1vupjq ´ pZupjqpWitq

1vupjqq
2 ¨ Ck

φ (175)

ZupjqpWitq
1vupjq “ Ỹi,t ´ θk1 Ỹi,t´1 ´ θk2D̃i,t ´ θ3X̃i,t (176)

ZupjqpWitq
1 “ pỸi,t, Ỹi,t´1, D̃i,t, X̃i,tq (177)
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vupjq “ p´1, θk1 , θ
k
2 , θ3q (178)

6. Now that the moment equation is in index form, I can apply the following relevant theorem

from Belloni et al. [2018] to obtain L2 rates.

Theorem F.1 (Bounds on Empirical Error for Non-Linear RGMM). Consider the non-linear

case and assume that Conditions L, DM, LID, NLID, and ENM are satisfied. Also, assume

that λ is chosen so that λ ď n´1{2p˜̀n ` `nq and that the side condition n´1{2p˜̀n ` `nq ď ε˚{2

holds. Then with probability at least 1 ´ α ´ δn,

}θ̂ ´ θ0}q ď
2p˜̀n ` `nqs1{q

µn
?
n

, q P t1, 2u,

in the case of LID(a) (exactly sparse model); and, as long as a ą 1, and A ą n´1{2`npK ` 1q,

}θ̂ ´ θ0}q ď
Ca,qpLn ` µnqp˜̀n ` `nqs1{q

µn
?
n

, q P t1, 2u,

in the case of LID(b) (approximately sparse model), where Ca,q is a constant depending only

on a and q.

7. Now, apply this bound to the problem at hand. Define θ̂3pθk1 , θ
k
2 , θ

k
4q as the parameter estimate

obtained from the RGMM, using the moment equation with fixed values pθk1 , θ
k
2 , θ

k
4q from the

grid, as specified in Equation (170).

I introduce the following notation: let f̂3pθk1 , θ
k
2 , θ

k
4q represent a function that maps the points

pθk1 , θ
k
2 , θ

k
4q on the grid to the corresponding RGMM solution θ̂3pθk1 , θ

k
2 , θ

k
4q. Let f0,3pθk1 , θ

k
2 , θ

k
4q

denote the oracle version of this function. Note that this is distinct from θ0,3. Theorem 2.1

provides the bound for every point on the grid.

}f̂3pθk1 , θ
k
2 , θ

k
4q ´ f0,3pθk1 , θ

k
2 , θ

k
4q}2 ď

2p˜̀n ` `nqs1{2

µn
?
n

@k (179)

8. This holds for every point on the grid, so I take the maximum to establish the bounds.
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max
k“1,2,...,K

}f̂3pθk1 , θ
k
2 , θ

k
4q ´ f0,3pθk1 , θ

k
2 , θ

k
4q}2 ď max

k“1,2,...,K

2p˜̀n ` `nqs1{q

µn
?
n

(180)

From this maximum bound, I can calculate an L2 rate for estimating the function f̂3. For

now, assume that f̂3 is estimated at a rate of Oppn´αq.

}f̂3 ´ f0,3}2 “ Oppn´αq (181)

9. Now, I focus on the convergence of θ̂1, θ̂2, and θ̂4, which can be solved through a low-

dimensional GMM problem. Our moment conditions include the estimated f̂3 as an input. I

introduce the following new moments.

gpWi, θ1, θ2, θ4, f̂3q “
1

T

T
ÿ

i“1

Ỹi,t´1epθq ´ epθq2 ¨
1

p1 ´ φqT
p1 ´

1 ´ φT

T p1 ´ φq
q (182)

Where

epθq “ pỸi,t ´ θ1Ỹi,t´1 ´ θ2D̃i,t ´ f̂3pθ1, θ2, θ4qX̃i,tq (183)

φ “ θ1 ` θ2 ¨ θ4 (184)

Let

ĝnpθ, fq “
1

N

n
ÿ

i“1

gpWi, θ, fq (185)

g0pθ, fq “ IEgpWi, θ, fq (186)

WTS:

}ĝnpθ̂, f̂q ´ g0pθ0, f0q} “ Oppn´1{2 ` n´αq (187)

Possible Argument

(a) I break the term on left hand side of Equation (187) into two parts.
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“ ĝnpθ̂, f̂q ´ g0pθ0, f0q

“ ĝnpθ̂, f̂q ˘ g0pθ̂, f̂q ´ g0pθ0, f0q

“ ĝnpθ̂, f̂q ´ g0pθ̂, f̂q
loooooooooomoooooooooon

CF

´ g0pθ̂, f̂q ´ g0pθ0, f0q
looooooooooomooooooooooon

Taylor

(188)

The CF term can be controlled with either cross fitting or empirical process theory.

The “Taylor” term can be controlled by taking taylor expansions around θ0 and f0.

(b) Taylor Term:

“ g0pθ̂, f̂q ´ g0pθ0, f0q
looooooooooomooooooooooon

Taylor

“ g0pθ̂, f̂q ˘ g0pθ̂, f0q ´ g0pθ0, f0q

“ g0pθ̂, f̂q ´ g0pθ̂, f0q
loooooooooomoooooooooon

Term1

` g0pθ̂, f0q ´ g0pθ0, f0q
loooooooooooomoooooooooooon

Term2

(189)

I perform a Taylor expansion of the first part of Term 1 around f0, using a functional analog

of a Taylor expansion (discussed on page 5 here). Let Df pθ̂, f0q represent the Jacobian matrix

of the moment function g0 with respect to the function f .

g0pθ̂, f̂q ´ g0pθ̂, f0q
loooooooooomoooooooooon

Term1

« g0pθ̂, f0q ` Dfgpθ̂, f0qpf ´ f0q ´ g0pθ̂, f0q (190)

Let Dθĝpθ0, f0q denote the Jacobian matrix of the moment function g0pθ0, f0q with respect to

the parameter vector θ.

g0pθ̂, f0q « g0pθ0, f0q ` Dθg0pθ0, f0qpθ̂ ´ θ0q (191)

g0pθ̂, f0q ´ g0pθ0, f0q
loooooooooooomoooooooooooon

Term2

« g0pθ0, f0q ` Dθg0pθ0, f0qpθ̂ ´ θ0q ´ g0pθ0, f0q (192)

I rewrite Equation (189) plugging in the expansions below.
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g0pθ̂, f̂q ´ g0pθ0, f0q
looooooooooomooooooooooon

Taylor

« Dfgpθ̂, f0qpf ´ f0q ` Dθg0pθ0, f0qpθ̂ ´ θ0q (193)

I determine the rate of the LHS by substituting the rates of the two terms on the RHS. From

Equation (??), we have |f̂ ´ f0|2 “ Oppn´αq. Since g0pθ̂, f0q is smooth and Dfĝpθ̂, f0q is a

bounded linear operator, it follows that |Dfg0pθ̂, f0qpf̂ ´ f0q|2 “ Oppn´αq.

Conclude with Equation (194).

}ĝnpθ̂, f̂q ´ g0pθ0, f0q} “ Oppn´1{2 ` n´αq (194)

10. Conclude with a convergence rate for the parameter estimates.

WTS:

}pθ̂1, θ̂2, θ̂3, θ̂4q ´ pθ0,1, θ0,2, θ0,3, θ0,4q}2 “ Oppn´αq (195)

where

θ̂3 “ f̂3pθ̂1, θ̂2, θ̂4q (196)

Given the smoothness of the moment conditions and the invertibility of the Jacobian, the goal

is to apply the Delta method to transfer the rate of convergence from the sample moments

to the parameter estimates.

G Absorbing Treatment

Yi,t “ ai ` τpDi ˆ 1tąTstartq ` εi,t (197)

Di “ ai ` ρ2Yi,Tstart´1 ` ui (198)

I label the bias in this model b4pθ0q. I follow similar steps as above. To do this I need to calculate
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the formula for ĞDi ˆ 1tąTstart .

ĞDi ˆ 1tąTstart “
1

T

T
ÿ

t“1

pai ` ρ2Yi,Tstart´1 ` uiqp1tąTstartq

“
1

T

T
ÿ

t“Tstart

pai ` ρ2Yi,Tstart´1 ` uiq

“
T ´ Tstart

T
pai ` ρ2Yi,Tstart´1 ` uiq

“
T ´ Tstart

T
pai ` ρ2pai ` εTstart´1q ` uiq

(199)

b4pθ0q “ plim
NÑ8

ˆ

1

N

N
ÿ

i“1

T
ÿ

t“1

ČDi ˆ 1tąTstart ε̃i,t

˙

(200)

“ ´ plim
NÑ8

ˆ

T

N

N
ÿ

i“1

ĞDi ˆ 1tąTstart ε̄i

˙

(201)

“ ´ plim
NÑ8

ˆ

T

N

N
ÿ

i“1

T ´ Tstart

T
pai ` ρ2pai ` εTstart´1q ` uiqε̄i

˙

(202)

“ ´
1

T
pT ´ Tstart ´ 1qρ2σ

2
ε (203)

This formula is very intuitive. It is only error in the time period Tstart´1 that is causing correlation

in the errors. So the Nickell bias is much smaller in this case.

This is particularly interesting because past outcomes are typically viewed as time-varying covari-

ates that are not absorbed by the individual fixed effect. However, in the case where the treatment

is absorbed, the past outcome used for selection becomes fixed. As a result, the history remains

constant over time and is controlled for by the fixed effect. Although there is still bias due to

violation of strict exogenity, it is not the standard OVB (omitted variable bias) type.
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