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Abstract

We propose a synthetic difference-in-difference estimator that incorporates time-varying
covariates. We incorporate covariates into a high-dimensional least squares with correlated
error-in-variables setting. We use results from this setting to derive conditions under which
our synthetic differences-in-differences estimator is asymptotically normal with estimable vari-
ance. Monte Carlo simulations demonstrate that our estimator outperforms classic synthetic
difference-in-differences in settings where covariates contain information about the outcome. We
illustrate the practical performance of our estimator by studying the impact of subsidy increases
on crop insurance choices within the United States Federal Crop Insurance Program (FCIP).
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1 Introduction

Applied researchers frequently use panel data to estimate treatment effects of interest. Since treat-
ment effects are often not randomly assigned, researchers rely on the structure of panel data to
create appropriate control groups for the treated units, thereby enabling valid estimation of treat-
ment effects. Synthetic control (SC) methods, first introduced by Abadie and Gardeazabal [2003]
and later expanded by Abadie et al. [2010], have become widely used among applied researchers for
this purpose. Arkhangelsky et al. [2021] further extended these methods by introducing synthetic
differences-in-differences (SDID). In this paper, we introduce synthetic differences-in-differences
with covariates (SDIDC), which allows for the incorporation of time-varying covariates into the
SDID framework.

Incorporating covariates can enhance the estimation of treatment effects, even in cases where co-
variates are not correlated with treatment. In our Monte Carlo simulations, which feature a data-
generating process without covariate-driven treatment selection, we find that using SDIDC instead
of the classic SDID reduces root mean square error (RMSE) by 50%. The improvement arises
from the fact that both SDID and SDIDC estimate an unobserved latent structure from observed
outcomes, Yit, which are typically noisy in practice. When covariates are predictive of the outcome,
controlling for them reduces noise in the outcome variable, thereby improving the precision of the
estimator.

For example, in climate economics, if the outcome Yit is corn yield, and weather variables, known to
be exogenous to the treatment, are available and predictive of yield, controlling for these variables
enhances the precision of the treatment effect estimate. Similar intuition has been demonstrated
in the synthetic control context with multiple outcomes Sun et al. [2023], where controlling for
multiple outcomes was shown to reduce noise, thereby leading to more accurate treatment effect
estimates.

In settings where covariate selection does play a role, many empirical economics papers include
time-varying controls in panel regressions. This practice is driven by concerns about time-varying
omitted variable bias, which may be correlated with both the treatment and the outcomes. For
instance, Bailey and Goodman-Bacon [2015] control for annual county-level government transfers
per capita, while East et al. [2023] examine the labor market effects of police-based immigration
enforcement policies, using time-varying covariates such as CZ-level annual economic conditions to
account for variation in policy implementation across U.S. commuting zones (CZ) over time. In
these settings it is important to allow for covariates as our method does.

From a methodological standpoint, our SDIDC approach presents an interesting challenge due to
the need to simultaneously estimate the covariate coefficients (β) along with unit (ω) and time (λ)
weights. Our theoretical innovation lies in combining the estimation of time and unit weights into
a single minimization procedure, rather than estimating the two sets of weights separately. This
joint estimation is essential because the covariate coefficient (β) is estimated concurrently with the
unit and time weights.

Rather than residualizing the covariates from the outcome and then estimating the unit and time
weights on the residuals, we propose a joint estimation approach. Residualizing in this way can
lead to inaccurate weight estimates when covariates are highly correlated with the latent factor
structure, resulting in noisy residuals. By jointly estimating β, ω, and λ, we mitigate this problem
and achieve more reliable estimates.

The rest of the paper proceeds as follows. We provide our form setting in Section 2. Section 3
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presents the estimator. Section 4 introduces formal results. Section 5 conducts a simulation study
to illustrate the properties of our estimator. Section 6 considers an empirical example of how
correcting for covariates with SDIDC impacts treatment effect estimation in an application to crop
insurance.

2 Setting

In this paper we assume that the data is generated from a latent factor model, also referred to an
interactive fixed-effects model (Xu [2017]). This model allows for treatment effect heterogeneity as
in De Chaisemartin and d’Haultfoeuille [2020].

Yit = γiυ
′
t + Zitβ +Witτ + ϵit (1)

For the rest of the paper we work with the matrix version of this model. To create the matrix
model we stack our Yit observations into an n× p matrix Y where n gives the the number of units,
and p is the number of time periods. We use bold letters to denote matrices and arrays.

Y = L+Z · β +W × τ + ϵ where (W × τ)it =Witτit. (2)

Here L is a noiseless n × p matrix that is a systemic component; we characterize it as a factor
model L = ΓΥ′. Here Γ is a matrix of latent unit factors, and Υ is a matrix of latent time factors.
The Z is our n× p× k noiseless array of covariates, where k is the number of covariates. The β is
a k-length vector that contains the parameters for the k covariates. In this paper we use the center
dot notation · to contract the third dimension of Z, and so Z · β is a n× p matrix. The W is our
n × p treatment matrix; we assume block treatment assignment, so Wit = 1({i > Nco, t > Tpre}).
We use subscript co to denote control units, tr for treated units, and pre for pre-treatment time
periods, and post for post-treatment time periods. The last term ϵ is the idiosyncratic component
a n × p error matrix. We assume that the conditional expectation of the error matrix given W ,
L, and Z is zero. This means that treatment assignment can not depend on ϵ, but we are not
assuming that W is randomized. Treatment assignment can depend on the systemic component L
and the covariates Z.

Our estimand of interest τ is the average treatment effect on the treated in the treated time periods.
Because of the block treatment assingment, we can write τ as follows.

τ =
1

Ntr, Tpost

N∑
i=Nco+1

T∑
t=Tpre+1

τit. (3)

Given the block treatment structure of the data, each of our matrices can be seen as having four
quadrants. We write out the quadrants of Y out explicitly below. We use the shorter notation.

Y =

(
Yco,pre Yco,post
Ytr,pre Ytr,post

)
. (4)

3



3 The Estimator

To estimate τ defined in Equation (3) we estimate unit weights ω̂, time weights λ̂, and a coefficient
vector β̂. ω̂ is a Nco-length vector of unit weights; they weight pre-treatment control units to
predict post-treatment outcomes absent exposure for the treated units. λ̂ is a Tpre-length vector of
time weights; they weight pre-treatment time periods for control units to predict post-treatment
outcomes for control units. Our coefficient vector β̂ is the regression coefficient vector for our
covariates.

As in classic SDID, the estimated unit ω̂ and time λ̂ weights are only for the control units and time
periods (Arkhangelsky et al. [2021]). Treated units and treated time periods are instead averaged
by being multiplied by vectors of 1/Ntr and 1/Tpost, to make that clear we use λpost ∈ IRTpost and
ωtr ∈ IRNtr . For any weights ω ∈ Ω and λ ∈ Λ and coefficients β ∈ IRk we can define an adjusted
weighted double differencing estimator.

τ̂(ω, λ, β) = ω′
trYtr,postλpost − ω′Yco,postλpost − ω′

trYtr,preλ+ ω′Yco,preλ (5)

Given that treated units and treatment time periods are averaged

(
Y:: Y:T
YN : YNT

)
=

(
Yco,pre Yco,postλpost
ω′
trYtr,pre ω′

trYtr,postλpost

)
.. (6)

We estimate the weights for the control units and control time periods by solving the following
Tikhonov-regularized least squares problem.

(ω̂, λ̂, β̂) = argmin
Θ,Λ,B

ℓ(ω, λ, β) (7)

ℓ(ω, λ, β) = ∥Y ′
::ω − Z ′

::·ω · β − Y ′
N : + Z ′

N :· · β∥2 + n(η2 − 1)∥Σ1/2
N : (ω − ψ)∥2

+ ∥Y::λ− Z::·λ · β − Y:T + Z:T · · β∥2 + p(η2 − 1)∥Σ1/2
T : (λ− ψ)∥2

(8)

Where η > 0, Σϵi := n−1IE[ϵ′ϵ] is the row covariance of the errors, and ψ := argminz∈IRp IE∥ϵN : −
ϵ::z∥2

We characterize our estimator by showing it converges to the deterministic model we would get by
minimizing the expectation of the same loss function

Deterministic Model
(ω̃, λ̃, β̃) = argmin

Θ,Λ,B
IE[ℓ(ω, λ, β)]. (9)

IE[ℓ(ω, λ, β)] = ∥L′
::ω − Z ′

::·ω · β − L′
N : + Z ′

N :· · β∥2 + n(η2)∥Σ1/2
ϵi (ω − ψ)∥2 + IE∥ϵψ − ν∥2

+ ∥L::λ− Z::·λ · β − L:T + Z:T · · β∥2 + p(η2)∥Σ1/2
ϵi (λ− ψ)∥2 + IE∥ϵψ − ν∥2.

(10)
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4 Formal Results

Our main theoretical results is addapting Theorem 1 from Hirshberg [2021] for our setting. Our
poof given in Appendix A.

Theorem 4.1. Consider the setting described above with essentially gaussian and spherical noise
and either the rows of [ε, ν] independent and identically distributed or the columns of [ε, ν] inde-
pendent with those of ε identically distributed.

∥Σ1/2
ε (θ̂ − θ̃)∥ ≤ s and ∥(θ̂0 − θ̃0) +A(θ̂ − θ̃)∥ ≤ η1/2s

with probability 1− c exp{−cu(v, s)} if s satisfies the fixed point condition

s2 ≥ c

[
v2σ2w2(Θ∗

s)

min(η2R, η
4
R)n

+
(v2σ2 rank(A)/peff)

1/2

η2Rn
+
σ∥Aθ̂ + θ̃0 − b∥w(Θ∗

s) + vσ2(n/peff)
1/2w(Θ∗

s)

η2RnR

]
,

η2R = max(0, η2 − c rank(A)/n).

Where Θ∗
s = {θ − θ̂ : θ ∈ Θ, ∥Σ1/2

ε (θ̂ − θ̃)∥ ≤ s} and x1,1/2 = x+ x1/2.

Here u(v, s) = min{v2σ2w2(Θ∗
s)/s

2, v2 rank(A), n} for v ≥ 1. The same holds if we substitute for
rank(A) a bound on approximate rank: any integer R for which

R ≥ cmin
{
σR+1(A)w(Θ

∗
s)/(s+ σνp

1/2
eff ), σ2R+1(A)/(v

2σ2)
}
.

5 Monte Carlo Evidence

5.1 Data Generating Processes

In our Monte Carlo we compare the performance of our estimator to classic SDID and TWFE under
two different DGPs. The two DGPs are identical except for having different treatment assignment
mechanisms. The first will have treatment uncorrelated with the covariate, and the second will
have treatment related to the covariate through a logit treatment assignment function.

5.1.1 DGP 1: No selection on covariates

Our outcome is generated with additive fixed effects, interactive fixed effects, and both treatment
and covariate effects.

Yit = ai + Lit +Witτ + Zitβ + ϵit. (11)

The individual fixed effects are drawn from a standard normal distribution.

ai ∼ N(0, 1). (12)

The covariate for each individual is drawn from an T length AR(1) processes with an autocorrelation
coefficient of .95 and standard normal errors. For our simulations β = 10.

Zi ∼ AR(1). (13)
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Treatment only occurs in the last time period T . The probability of treatment in the last time
period is p. In our simulations for uncorrelated treatments and covariates we pick p = .02. For our
simulation we use τ = 10.

Wit =


0 if t < T

0 with probability 1− p if t = T

1 with probability p if t = T .

(14)

For the unobserved time varying fixed effects Lit, we create two unobserved time varying factors
F1 and F2.

F1it = .1× t+ e1it, e1it ∼ N(0, 1)

F2it = .3× t+ e2it, e2it ∼ N(0, 1).
(15)

Treated units, that is units who in their last time period have Wit = 1, have their Lit = 4F1 +1F2.
Control units their Lit = 4F1+1F2 with probability 1/3 and their Lit = 2F1+6F2 with probability
2/3. This was done so that treatment was related to Lit, and that some control units would be
better matches for the treated units than others.

Lit =


4F1it + 1F2it for i such that WiT = 1

4F1it + 1F2it with probability 1/3 if WiT = 0

2F1it + 6F2it with probability 2/3 if WiT = 0.

(16)

.

Our noise is also drawn from a standard normal distribution.

ϵit ∼ N(0, 1). (17)

5.1.2 DGP 2: Selection on covariates

This DGP is identical to the DGP above, only the treatment assignment (Equation (14)) is different.
Now instead of a fixed probability of p, we have that p is a function of the covariate.

p =
1

1 + 3 exp
(
11− 3

T−1

∑T−1
t=1 Zit

) . (18)

A question. What happens if selection is based on noiseless past observations, i.e., L:: +X:: · β?
Seems plausible in some contexts. More generally, I’m curious about what we’d see in sim with
selection trying to approximate some realistic process. Perhaps the sims we do in SDID with some
auxilliary info as covariates?

Wit =


0 if t < T

0 with probability 1− p if t = T

1 with probability p if t = T .

(19)
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5.2 Results

We provide Monte Carlo results for both of the DGPs above. For each DGP we create 1000 datasets
with 500 units and 40 time periods and run the following three models to calculate the treatment
effect. Recall that the true treatment effect τ = 10.

1. SDID with covariates

2. SDID from Arkhangelsky et al. [2021]

3. Linear two way fixed effects (TWFE)

The TWFE model is implemented by running the following linear regression model in Equa-
tion (20).

Yit = ai + γt + βXit + τDit (20)

Table 1: DGP 1

Method τ̂ SE Coverage RMSE

SDIDC 9.69 3.19 0.94 10.25
SDID 10.07 4.65 0.95 21.60
TWFE 5.98 3.04 0.74 25.44

Table 2: DGP 2

Method τ̂ SE Coverage RMSE

SDIDC 10.06 2.64 0.95 6.95
SDID 6.97 3.46 0.86 21.14
TWFE 6.00 2.71 0.68 23.36

Data generated with 500 units, 40 time periods, and true treatment effect τ = 10. Tables summarize
1000 Monte Carlo simulations: τ̂ gives average treatment effect, SE gives the standard deviation
of the estimator, Coverage gives the 95% coverage level, and RMSE is root mean square error.

The results are in line with what we would expect. Table 1 shows the results for DGP 1, when
treatment is unrelated to the covariate. In this DGP, the benefit of controlling for the covariate
in SDIDC comes from the fact that it removes some of the noise in the model. This leads SDIDC
to have smaller standard errors (SE) and root mean square error (RMSE) than classic SDID. In
Table 1 we can see that in comparison to SDID, SDIDC has 30% smaller SE and 50% smaller
RMSE. Since in DGP 1 the covariate is not related to treatment assignment, SDID is not biased,
since one does not need to control for the covariate for the exogenity assumption to hold. We see
that the TWFE model is biased, since this model has no way of controlling for the unobserved Lit
component that is correlated with treatment. Therefore even though TWFE is controlling for the
covariate, omitting controlling for Lit causes a violation of the exogenity assumption.

Now in DGP 2, when the covariate is correlated with treatment, not controlling for the covariate
leads to biased treatment effects in SDID. We see in Table 2 that SDID has a bias of 3 and loses
proper coverage. TWFE has bias of 4 and also loses proper coverage. The only method that is able
to estimate the treatmnet effect well is SDIDC, since it is able to control for both Lit and Zit.

6 Empirical Application

We empirically study the effects of a subsidy increase in 2009 for treated crops1 on crop insurance
choice in the context of the Federal Crop Insurance Program (FCIP) following Klosin and Solomon

1Grainsorghum, Wheat, Soybeans, Corn, Cotton, Rice, Barley,Canola, Fluecuredtob, Pecans, Sunflowers.
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[2024]. The FCIP is a government-run and financed insurance program that protects farmers
against any hazard to their crops. In the FCIP, farmers can enroll their fields into separate or
aggregate policies.2 The former insures each field independently; the latter insures total yield for a
given crop.

We using the universe of insurance data, at a county-crop level, to compare insurance choices and
among crops treated with the policy change to crops that were not (yet) treated. Our data source
is the FCIP Summary of Business [USDA, 2024]. The FCIP data record all annual crop insurance
contracts. The data include contract type, acreage insured, premium paid, total potential liability,
subsidy amount, insurance payout amount and loss ratios. The data are at the county x crop level,
and we use data 1999 - 2014.

We run a TWFE regression to see how the policy change impacts enrollment in optional insurance.
We use the number of acres insured for the county x crop in a year as our control variable.

Optional Insurance Percentc,t = ci + γt + βAcresc,t + τ

[
(Treated Crop)× (Year ≥ 2009)

]
c,t

+ ϵc,t

(21)

We then run SDIDC to see how the treatment estimate changes. The 95% confidence interval for
the TWFE does not include the SDID estimates which are smaller in magnitude.

Method τ̂ SE

SDIDC 0.162 0.016
TWFE 0.094 0.002

2In the official terminology, aggregate units are known as ’enterprise’ units, and separate units are ’optional’ units.
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A Proof Theorem (4.1)

A.1 Intuition

In this paper we use a localization approuch to bound the distance between our estimated weights
(ω̂, λ̂, β̂) and the oracle weights (ω̃, λ̃, β̃) (Wainwright [2019], Chapter 14).

To characterize (ω̂, λ̂, β̂) we use the property that L(δ) ≤ 0 for L defined in Equation (22).

L(δ) = L(δω, δλ, δβ) = ℓ(ω̃ + δω, λ̃+ δλ, β̃ + δβ)− ℓ(ω̃, λ̃, β̃) (22)
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We define a set Θ∗
r,s to be the set of all δ satisfying the following constraints.

∥Σ1/2
εi· δω∥ ≤ sω

∥Σ1/2
ε·j δλ∥ ≤ sλ

∥L′
::δω − Z ′

::·δω · β̃ − Z ′
::·δω · δβ + (Z ′

N :· − Z ′
::·ω̃) · δβ∥ ≤ rω

∥L::δλ − Z::·δλ · β̃ − Z::·δλ · δβ + (Z:T · − Z::·λ̃) · δβ∥ ≤ rλ

∥δβ∥ ≤ f(r, s)

(23)

characterised by two variables, s ∈ IR which controls the coefficient dimension and r ∈ IR which
controls the prediction space.

We will show that, with high probability, δ̂ is in this set by (i) using an explicit characterization of
β̂ as a function of λ̂ and ω̂ to establish the bound ∥β̂ − β̃∥ ≤ f(r, s) and (ii) showing that, for any
triple (δω, δλ, δβ) with ∥δβ∥ ≤ f(r, s), L(δ) > 0 unless the other constraints in (23) are satisfied,
i.e., unless δ ∈ Θ⋆

r,s. The bounds we state in [some theorem] are, roughly speaking, the smallest
values of r and s for which we can do this.

We will work with this lower bound on L(δ), which holds for all δ ∈ Θ∗
r,s with probability 1− p.

L(δ) ≥ κω∥Aδωδβ∥2 + κωnη
2∥Σ1/2δω∥2 + κλ∥Aδλδβ∥2 + κλpη

2∥Σ1/2δλ∥2 (24a)

− 2|max(∥Aδωδβ∥/rω, 1)cKvp
−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}| (24b)

− 2|max(∥Aδλδβ∥/rλ, 1)cKvp
−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}| (24c)

− 2|cKvRMSEω wΣ(Θ
⋆
sω)| for RMSEω := ∥(L′

::ω̃ − Z ′
::·ω̃ · β̃ − L′

:N + Z ′
N :· · β̃)∥ (24d)

− 2|cKvRMSEλwΣ(Θ
⋆
sλ
)| for RMSEλ := ∥(L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃)∥ (24e)

− 2|cvK2(n/peff,Σ)
1/2wΣ(Θ

⋆
s)| (24f)

− 2|cvK2(p/peff,Σ)
1/2wΣ(Θ

⋆
λ)| (24g)

Here p = . . . and R ∈ IN is the rank of some thing.

Notation

• w(T ) will denote the Gaussian width of T ⊂ IRn

• rad(T ) will denote the Gaussian radius rad(T ) := supx∈T ∥x∥2

• The Orlicz ψ2-norm of a random variable X denoted by ∥X∥ψ2 := inf{t > 0, IE[eX
2/t2 ] ≤ 2}

• ϕ = 1

• K = Krow for independent rows. K is a bound characterising the concentration of quantities
related to ϵ

• p
1/2
eff,Σ, for independent rows is ∥Σ

1/2
ϵi· ω̃ − ψ∥+ ∥ϵiψ − ϵN :∥L2

• Θ∗
s = {θ − θ̃ : θ ∈ Θ, ∥Σ1/2

ϵi (θ − θ̃)∥ ≤ s}
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• Θ∗
s,r = {δθ := θ − θ̃ ∈ Θ∗

s : ∥Aδθ∥ ≤ r} = {δθ := θ − θ̃ ∈ Θ∗
s : ∥(L′

:: − Z ′
:: · δβ)δω∥ ≤ r}

• σR+1(X) is the R+1st singular value of X. σ1(X), σ2(X), · · · well be the decreasing sequence
of singular values of X with σk(X) = 0 for k ≥ rank(X)

• d
1/2
Σ (Θ∗

s) = wΣ(Θ
∗
s)/rad(Σ

1/2
ϵi· Θ

∗
s)

We use
Aδωδβ = L′

::δω − Z ′
::·δω · β̃ − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ (25)

Aδλδβ = L::δλ − Z::·δλ · β̃ − Z::·δλ · δβ + (Z ′
:T · − Z::·λ̃) · δβ (26)

or, in stacked form,

Aδθδβ = L̄::δθ − Z̄:::δθ · β̃ − Z̄:::δθ · δβ + (Z̄:P : − Z̄:::δθ) · δβ

for δθ =

(
δω
δλ

)
, L̄:: =

(
L′
:: 0
0 L::

)
, Z̄::: =

(
Z ′
::: 0
0 Z:::

)
, Z̄:P : =

(
Z ′
N ::

Z:T :

)
.

(27)

A.2 Bounding δβ in terms of r and s.

Idea: if ω = ω̃ + δω, λ = λ̃+ δλ ∈ 27− lastthing, then β̂ − β satisfies last thing.

IE(Xuw −Xxz)
2 = IE{g′(A⊥uv −A⊥xz)}2

= ∥A⊥uw −A⊥xz∥2
(28)

What is Auw −Axz for w(u, v) = β̂(ω̃ + u, λ̃+ v)− β̃ and z(x, y) = β̂(ω̃ + x, λ̃+ y)− β̃?

Let’s start with this. A from (25) is related to Aω as defined below (32) like this.

Auw = L′
::u−Aω̃+u · (β̃ + w)−Aω̃ · β̃

= [somethingwithahatmatrix]
(29)

Looking at the increment w = {β̂(ω̃ + u, λ̃+ v)− β̃} − z = {β̂(ω̃ + x, λ̃+ y)− β̃}, here’s what we
see.

Auw(u, v)−Axz(x, y)

= Aω̃+x[A
′
ω̃+xAω̃+x +A′

λ̃+y
Aλ̃+y]

−1[b′ω̃+xAω̃+x + b′
λ̃+y

Aλ̃+y]
′

− [same with x, y replaced by u, v]

= Hω̃+x{bω̃+x + . . .} −Hω̃+u{bω̃+u + . . .} for Hω,λ = Aω[A
′
ωAω +A′

λAλ]
−1Aω

= {Hω̃+x −Hω̃+u}{bω̃+x + . . .}+Hω̃+u[{bω̃+x + . . .} − {bω̃+x + . . .}]

(30)

But what we really want to do here is bound this.

Rβ = max
v∈PβΘ⋆

s,r

∥A⊥□v∥ (31)

for A acting on δω, δβ as above in (25), thought of as an operator norm on δω, which we’ve indicated
by replacing it with □. To do this, we probably want to do more or less the same argument we
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used below, but applied to the stochastic process A□{β̂(ω, λ)− β̃} instead of {β̂(ω, λ)− β̃} itself.
To bound this operator norm, we probably will want to find a sudakov-fernique-type bound on the
equivalent expression

Rβ = max
v∈PβΘ

⋆
s,r

∥t∥≤1

A⊥tv

instead of trying to bound this operator norm elementwise or whatever like we were doing below
by letting q be a row of Q−1.

Here A⊥ is P⊥A where P⊥ is a projection onto the orthogonal complement of the R-dimensional
subspace where most of Ax goes—a sort of PCA thing.

Letting ω = ω̃ + x, what’s happening in the first term is that we’re multiplying bω by Aω(A
′
ωAω +

AλA
′
λ)

−1A′
ω, which blows things up even less than the usual hat matrix Aω(A

′
ωAω)

−1A′
ω because

the Aλ bit makes the thing we’re inverting in the former bigger. This means, I think, that we
should be ok: getting good approximation in the sense that Aω = Zω−ZN is small is fine because
we’re multiplying by as many copies of Aω as we are A−1

ω .

Let us characterize our β as a function of our weights. The idea is that we want to bound the size
of the β ball. This can be be bounded by the dimention of the ball (k in our case) times the radius
of the ball. What we want to do is charachtrize the radius as a function of our ω and λ.

β̂(ω, λ) = argmin
β

∥(Y ′
:: − Z ′

::· · β)ω − (Y ′
N : − ZN :·′ · β)∥2 + ∥(Y:: − Z::· · β)λ− (Y:T − ZN :· · β)∥2

= argmin
β

∥ (Y ′
::ω − Y ′

N :)︸ ︷︷ ︸
bω

− (Z ′
::·ω − Z ′

N :·)︸ ︷︷ ︸
Aω

·β∥2 + ∥ (Y::λ− Y:T )︸ ︷︷ ︸
bλ

− (Z::·λ− ZN :·)︸ ︷︷ ︸
Aλ

·β∥2

= argmin
β

⟨bω, bω⟩+ ⟨bλ, bλ⟩ − 2⟨bω, Aω · β⟩ − 2⟨bλ, Aλ · β⟩+ ⟨Aω · β,Aω · β⟩+ ⟨Aλ · β,Aλ · β⟩

= argmin
β

⟨bω, bω⟩+ ⟨bλ, bλ⟩ − 2[b′ωAω + b′λAλ] · β + β′[A′
ωAω +A′

λAλ] · β

(32)

Here notation wise Aω was a p × 1 × k array, but we contracted out the dimension that is just 1,
and work with the resulting p× k matrix. Therefore above and below Aω is p× k and Aλ is n× k

We take the derivative wrt to β and solve for first order condition

−2[b′ωAω + b′λAλ] + 2[A′
ωAω +A′

λAλ] · β = 0

β = [A′
ωAω +A′

λAλ]
−1[b′ωAω + b′λAλ]

′ (33)

A.2.1 Bound differences in β

1. define β̃ as a function of ω, λ more clearly.

2. clarify what we’re bounding. Is it β̂(ω, λ)− β̃(ω̃, λ̃) for (δω, δλ) ∈ Pω,λΘ⋆
s,r?

So our β with noise is
β̂(ω, λ) = [A′

ωAω +A′
λAλ]

−1[b′ωAω + b′λAλ]
′ (34)
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So our β without noise at the oracle weight values is

β̃(ω̃, λ̃) = [A′
ω̃Aω̃ +A′

λ̃
Aλ̃]

−1[(L′
::ω̃ − L′

N :)
′Aω̃ + (L::λ̃− L:T )

′Aλ]
′ (35)

We bound ∥β̂(ω, λ)− β̃(ω̃, λ̃∥2 here as the bound is helpful in our proofs.

β̂(ω, λ)− β̃(ω̃, λ̃) = β̂(ω, λ)± [A′
ω̃Aω̃ +A′

λ̃
Aλ̃]

−1[(L′
::ω − L′

N :)
′Aω + (L::λ− L:T )

′Aλ]
′ − β̃(ω̃, λ̃)

1) = [A′
ωAω +A′

λAλ]
−1[(ϵ′::ω − ϵ′N :)

′Aω + (ϵ::λ− ϵ:T )
′Aλ]

′

2) +

[
[A′

ωAω +A′
λAλ]

−1 − [A′
ω̃Aω̃ +A′

λ̃
Aλ̃]

−1

]
[(L′

::ω̃ − L′
N :)

′Aω̃ + (L::λ̃− L:T )
′Aλ]

′

3) + [A′
ω̃Aω̃ +A′

λ̃
Aλ̃]

−1[L′
::(δω)Aω − (L′

::ω̃ − L′
N :)Z

′
::δω + L::(δλ)Aλ − (L′

::λ̃− L′
N :)Z::δλ]

(36)

In particular, we’ll bound the two-norm of this difference.

We call Q(ω, λ) = [A′
ωAω+A

′
λAλ]. And F1(ω, λ) = [(ϵ′::ω−ϵ′N :)

′Aω+(ϵ::λ−ϵ:T )′Aλ]′ and f2(ω, λ) =
[(L′

::ω − L′
N :)

′Aω + (L::λ− L:T )
′A′
λ]

′. In these terms, 2 = [Q(ω, λ)−1 −Q(ω̃, λ̃)−1][f2(ω̃, λ̃)].

Term 1
Term 1 = Q(ω, λ)−1F1(ω, λ) (37)

Each component of this is a subgaussian process and we want to bound the max of its two norm
over (ω, λ) ∈ (ω̃, λ̃)+Pω,λΘ⋆

r,s. We’ll do that by taking the two-norm of bounds on its components.

These have the form q(ω, λ)TF1(ω, λ) where q(ω, λ) is a row of Q(ω, λ)−1.

Via Talagrand’s comparison inequality, this is bounded by a constant times the max of a corre-
sponding gaussian process, and we can use Sudakov-Fernique to bound that max by the max of
any gaussian process with increments that have larger variance. We need to find such a gaussian
processes and bound its max. To do this, let’s start out by calculating and bounding the increments
of Term 1. We’ll think of u, v and x, y being ω, λ pairs—u and x are instances of ω and v and y
instances of λ.

We’ll start by writing our increment and decomposing it into two parts—Like we decomposed Term
1 itself into two parts, one in which F1 changes and another in which Q does.

Term 1 increment = q(u, v)F1(u, v)− q(x, y)F1(x, y)

= q(u, v)(F1(u, v)− F1(x, y)) + (q(u, v)− q(x, y))F1(x, y)
(38)

so, because (a+ b)2 ≤ 2a2 + 2b2 generally,

[Term 1 increment]2

= [{q(u, v)(F1(u, v)− F1(x, y)) + (q(u, v)− q(x, y))F1(x, y)}]2

≤ 2{q(u, v)(F1(u, v)− F1(x, y))}2
1.1

+ 2{(q(u, v)− q(x, y))F1(x, y)}2
1.2

.

(39)

The variance of our increment is the expected value of this quantity, so we will bound the expected
values of each term in our bound. We will do the calculations in subsections below. The result is
the following.
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Var[Term 1 increment] ≤ σ(v)2∥Z:::(v − y) · q∥2 + ∥Σ1/2
εi· (v − y)∥2∥(Z:::v − Z:T :) · q∥2

+ 2
{
(x′Z::: − ZN ::) · v

}(
∥x∥2Σεi· +Σν

){
(x′Z::: − ZN ::) · v

}
+ 2{(Z:::y − Z:T :) · v}

(
{∥Σ1/2

εi· (y − ψ)∥2 + σ2ν}I
)
{(Z:::y − Z:T :) · v}

(40)

Where v = q(u, v)− q(x, y) and σ(v)2 = (v − ψ)′Σεi·(v − ψ) + σ2ν .

σ(v)2∥Z:::(v − y) · q∥2 = ∥A()(v − y)∥2 for A(·) = σ(v)Z::: · q

≤ max
...

∥A(·)∥2∥v − y∥ = IE
{
g′(v − y)

}2
for g ∼ N(0,max

...
∥A(·)∥2I)

(41)

Term 1.1 Much like we did above, we’ll decompose Term 1.1 into one part in which ω = u&x
changes and another in which λ = v&y does.

Term 1.1. = q(u, v){F1(u, v)± F1(u, y)− F1(x, y)}
= q(u, v){F1(u, v)− F1(u, y)}+ q(u, v){F1(u, y)− F1(x, y)}

(42)

and again because (a+ b)2 ≤ 2a2 + 2b2,

Term 1.12 ≤ 2[q(u, v){F1(u, v)− F1(u, y)}]2 + 2[q(u, v){F1(u, y)− F1(x, y)}]2

= 2{F1(u, v)− F1(u, y)}TM{F1(u, v)− F1(u, y)}
+ 2{F1(u, y)− F1(x, y)}TM{F1(u, y)− F1(x, y)} for M = q(u, v)q(u, v)T .

(43)

We plug in the definition of F1

F1(u, y) = (ϵ′::u− ϵ′N :)(Z::u− ZN :)− (ϵ::y − ϵ:T )(Z::y − Z:T ) (44)

F1(u, v)− F1(u, y) = (ϵ′::u− ϵ′N :)(Z::u− ZN :)− (ϵ::v − ϵ:T )(Z::v − Z:T )

− [(ϵ′::u− ϵ′N :)(Z::u− ZN :)− (ϵ::y − ϵ:T )(Z::y − Z:T )]

= −(ϵ::v − ϵ:T )(Z::v − Z:T ) + (ϵ::y − ϵ:T )(Z::y − Z:T )

= −(ϵ::v − ϵ:T )[(Z::v − Z:T )− (Z::y − Z:T )] + [(ϵ::v − ϵ:T )− (ϵ::y − ϵ:T )](Z::v − Z:T )

= −(ϵ::v − ϵ:T )[Z::(v − y)] + [ϵ::(v − y)](Z::v − Z:T )
(45)

Temporarily calling these two terms a and b, we plug this into 114 and apply the bound (x +
y)T (x+ y) ≤ 2∥x∥2 + 2∥y∥2, yielding this bound.

{F1(u, v)− F1(u, y)}′qq′{F1(u, v)− F1(u, y)}
= {a+ b}′qq′{a+ b}
≤ 2a′qq′a+ 2b′qq′b

= 2(a′q)2 + 2(b′q)2

= σ(v)2∥Z::(v − y) · q∥2 + ∥Σ1/2
εi· (v − y)∥2∥(Z::v − Z:T ) · q∥2

(46)
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What remains is to calculate the expected value of these two terms. Below we will find that

2(a′q)2 + 2(b′q)2 = σ(v)2∥Z::(v − y) · q∥2 + ∥Σ1/2
εi· (v − y)∥2∥(Z::v − Z:T ) · q∥2 (47)

The ’a’ term

E[a′qq′a] = IE(q′a)2 = σ2(v)∥Z::(v − y) · q∥2 for σ2(v) = (v − ψ)′Σεi·(v − ψ) + σ2ν (48)

using, in the last step, the characterization of q′a that follows.

ai = {Z::i(v − y)}′{ϵ::v − ϵ:T }
= {Z::i(v − y)}′Σ1/2(v)g where g ∼ N(0, I) and

Σ(v) = IE{ϵ::v − ϵ:T }{ϵ::v − ϵ:T }′

= IE[{ϵ::(v − ψ)}+ {ϵ::ψ − ϵ:T }][{ϵ::(v − ψ)}+ {ϵ::ψ − ϵ:T }]′

= IE{ϵ::(v − ψ)}{ϵ::(v − ψ)}′ + IE{ϵ::ψ − ϵ:T }{ϵ::ψ − ϵ:T }′

= IEϵ::(v − ψ)(v − ψ)′ϵ′:: ++IE{ϵ::ψ − ϵ:T }{ϵ::ψ − ϵ:T }′

= σ2(v)I for

σ2(v) = IEϵi:(v − ψ)(v − ψ)′ϵ′i: + IE{ϵi:ψ − ϵiT }{ϵi:ψ − ϵiT }
= (v − ψ)′IEϵi:ϵ

′
i:

Σεi·

(v − ψ) + σ2ν transposing the scalar ϵ′i:(v − ψ).

(49)

Consequently, q′a = σ(v)g′Z::(v − y) · q and

IE(q′a)2 = = σ(v)2IE
{
g′Z::(v − y) · q

}′{
g′Z::(v − y) · q

}
= σ(v)2{Z::(v − y) · q}′IEgg′{Z::(v − y) · q}
= σ(v)2{Z::(v − y) · q}′{Z::(v − y) · q}
= σ(v)2∥Z::(v − y) · q∥2

(50)

The ’b’ term.

E[b′qq′b] = IE(q′b)2 = ∥Σ1/2
εi· (v − y)∥2∥(Z::v − Z:T ) · q∥2 (51)

using, in the last step, the characterization of q′b that follows.

bi = [ϵ::(v − y)]′(Z::iv − Z:T i)

= [GΣ1/2
εi· (v − y)]′(Z::iv − Z:T i) for Gij ∼ N(0, 1)

= (v − y)′Σ1/2
εi· G(Z::iv − Z:T i) where Z··i is the part of Z·· that hits βi .

(52)

Consequently, q′b = (v−y)′Σ1/2
εi· G(Z::v−Z:T ) ·q and, using the identity IE(x′Gy)2 = ∥x∥2∥y∥2 gives

us the claimed characterization.

Term 1.2
2{(q(u, v)− q(x, y))F1(x, y)}2

1.2
. (53)

F1(x, y) = (x′ϵ:: − ϵN :)(x
′Z:: − ZN :)

′ − (ϵ::y − ϵ:T )
′(Z::y − Z:T ) (54)
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This has the form IE(v′Σ1/2g)2 where v = q(u, v)− q(x, y), g ∼ N(0, 1) and Σ1/2 is the covariance
matrix of F1(x, y), i.e., it is v

′Σv. What is Σ? It’s the expectation of an outer-product of this with
itself in the 3rd (β) dimension, so to get an element we multiply a copy of this with Z:: → Z::i and
one with Z:: → Z::j .

Σij = IE
{
(x′ϵ:: − ϵN :)(x

′Z::i − ZN :i)
′ − (ϵ::y − ϵ:T )

′(Z::iy − Z:T i)
}
×{

(x′ϵ:: − ϵN :)(x
′Z::j − ZN :j)

′ − (ϵ::y − ϵ:T )
′(Z::jy − Z:Tj)

}
= 1.2.1 + 2× 1.2.2 + 1.2.3 for 1.2.x as below

(55)

where

1.2.1 = IE(x′Zi − ZN ::i)(x
′ϵ:: − ϵN :)

′(x′ϵ:: − ϵN :)(x
′Z::j − ZN :j)

′

= (x′Zi − ZN ::i)
(
∥x∥2Σεi· +Σν

)
(x′Z::j − ZN :j)

′

1.2.2 = IE(x′Z::i − ZN :i)(x
′ϵ:: − ϵN )

′(ϵ::y − ϵT )
′(Z::jy − Z:Tj)

= (x′Z::i − ZN :i)
(
Σεi·(y − ψ)x′

)
(Z::jy − Z:Tj)

1.2.3 = IE(Z::iy − Z:T i)
′(ϵ::y − ϵ:T )(ϵ::y − ϵ:T )

′(Z::jy − Z:Tj)

= (Z::iy − Z:T i)
′
(
{∥Σ1/2

εi· (y − ψ)∥2 + σ2ν}I
)
(Z::jy − Z:Tj)

(56)

Therefore we have that

v′Σv =
{
(x′Z::: − ZN ::) · v

}(
∥x∥2Σεi· +Σν

){
(x′Z::: − ZN ::) · v

}
+
{
(x′Z::: − ZN ::) · v

}(
Σεi·(y − ψ)x′

)
{(Z:::y − Z:T :) · v}

+ {(Z:::y − Z:T :) · v}
(
{∥Σ1/2

εi· (y − ψ)∥2 + σ2ν}I
)
{(Z:::y − Z:T :) · v}

≤ 2
{
(x′Z::: − ZN ::) · v

}(
∥x∥2Σεi· +Σν

){
(x′Z::: − ZN ::) · v

}
+ 2{(Z:::y − Z:T :) · v}

(
{∥Σ1/2

εi· (y − ψ)∥2 + σ2ν}I
)
{(Z:::y − Z:T :) · v}

(57)

Steps explaining the three terms in Σ are given below.

Here each term has the form a′Sb where a and b are deterministic vectors and S is the expected
value of an outer product of noise vectors. We’ve simply substituted the appropriate matrix S here
rather than showing the calculation. We’ll do that now for each of our three terms.

To explain where the expressions in Equation (56) come from, we write out the steps for each of
the three parts.

In 1.2.1, we have ...

1.2.1 = IE(x′Zi − ZN ::i)(x
′ϵ:: − ϵN :)

′(x′ϵ:: − ϵN :)(x
′Z::j − ZN :j)

′ (58)

Focusing on the middle of this expression we have

IE(x′ϵ:: − ϵN :)
′(x′ϵ:: − ϵN :) = IEϵ′::xx

′ϵ:: + 2IEϵ′::xϵ
′
:N + IEϵ:N ϵ

′
:N

= ∥x∥2Σεi· + 0 + Σν .
(59)
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Here, in the last step, we’ve used the following calculation of an element of IEϵ′::xx
′ϵ::.

IE
{
ϵ′::xx

′ϵ::
}
ij
= IEϵ′:ixx

′ϵ:j

=
∑
kℓ

xkxℓIEϵkiϵℓj

=
∑
kℓ

xkxℓ

{
IEϵkiϵkj if k = ℓ

0 otherwise

=
∑
k

x2kIEϵkiϵkj

= ∥x∥2(Σεi·)ij

(60)

Now for the steps of term 1.2.2.

1.2.2 = IE(x′Z::i − ZN :i)(x
′ϵ:: − ϵN )

′(ϵ::y − ϵT )
′(Z::jy − Z:Tj) (61)

Focusing in the middle part of this term.

IE(x′ϵ:: − ϵN )
′(ϵ::y − ϵT )

′ = IE(x′ϵ::)
′[ϵ::(y − ψ)]′ + IE(x′ϵ::)

′[(ϵ::ψ − ϵ:T )]
′

= IE(x′ϵ::)
′
i[ϵ::(y − ψ)]′j + IE(ϵ′::x)i[(ϵ::ψ − ϵ:T )]

′
j

(62)

Now for the steps of term 1.2.3.

1.2.3 = IE(Z::iy − Z:T i)
′(ϵ::y − ϵ:T )(ϵ::y − ϵ:T )

′(Z::jy − Z:Tj) (63)

Focusing in on the middle part of this term. We’ll start by adding and subtracting ϵ::ψ, the
orthogonal projection of ϵ:T onto ϵ::, to rewrite ϵ::ψ−ϵ:T as a sum of uncorrelated terms: ϵ::y−ϵ:T =
ϵ::(y − ψ) + (ϵ::ψ − ϵ:T where IE(ϵ::ψ − ϵ:T )

′ϵ:: = 0.

(ϵ::y − ϵ:T )(ϵ::y − ϵ:T )
′ = {ϵ::(y − ψ) + (ϵ::ψ − ϵ:T )}{ϵ::(y − ψ) + (ϵ::ψ − ϵ:T )}′

= IEϵ::(y − ψ)(y − ψ)′ϵ′ + IE(ϵiψ − ϵ:T )(ϵjψ − ϵT )
′

= IIE{ϵi·(y − ψ)}2 + IIE(ϵi·ψ = ϵiT )
2

= I(y − ψ)′Σεi·(y − ψ) + Iσ2ν

= I{∥Σ1/2
εi· (y − ψ)∥2 + σ2ν}

(64)

Term 2 f(X) = X−1 is locally ∥X−1∥-Lipschitz, i.e., ∥X−1 − Y −1∥ ≤ ∥X−1∥∥X − Y ∥, so

∥Term 2∥ := ∥[Q(ω, λ)−1 −Q(ω̃, λ̃)−1]× f2(ω̃, λ̃)∥
≤ ∥Q(ω̃, λ̃)−1∥∥Q(ω, λ)−Q(ω̃, λ̃)∥ × ∥f2(ω̃, λ̃)∥
≤ ∥Q(ω̃, λ̃)−1∥ × ∥f2(ω̃, λ̃)∥ × [some function of s, r] for all δω, δλ ∈ Θ⋆

s,r

(65)

the some function is going to be the maximum disstance in Q .
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Term 3

Term 3 = Q(ω̃, λ̃)f3(ω, λ) (66)

A.3 Characterizing our Radii r and s

A.4 Choosing s: Bounding ∥Σ1/2δω∥ and ∥Σ1/2δλ∥

Writing our version of equation 36.

L̃(δ) ≥ κω∥Aδωδβ∥2 + κωnη
2∥Σ1/2δω∥2 − cα

− q(δ)cKvp
−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}

(67)

q(δ) = max(∥Aδωδβ∥/rω, 1) (68)

α = KvRMSEω wΣ(Θ
⋆
sω) + vK2(n/peff,Σ)

1/2wΣ(Θ
⋆
s) (69)

Now we are going to hold the s fixed

L̃(δ) ≥ κωnη
2s2ω − cα

+ κω∥Aδωδβ∥2 − q(δ)cKvp
−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}

(70)

What we’ll do now is find a lower bound that holds for all possible values of x = ∥Aδωδβ∥ by
approximately minimizing over x. As a function of x, this second line is

q1(x) = κωx
2 − cKvp

−1/2
eff,Σ {

√
R}rω − cKvp

−1/2
eff,Σ {Bω1 w(Θ

⋆
sω )−Bω2

√
k(sω + sλ)} if x ≤ r,

q2(x) = κωx
2 − x

rω

[
cKvp

−1/2
eff,Σ {

√
R}rω + cKvp

−1/2
eff,Σ {Bω1 w(Θ

⋆
sω ) +Bω2

√
k(sω + sλ)}

]
if x ≥ r.

=

(71)

Idea. What we’ll do now is choose r—which is arbitrary—to give us a relatively simple expression
for this minimum. In particular, we will choose r so that the minimum is q1(0). Having done this,
we can lower bound the right side of (70) by simply substituting q1(0) for its second line. This is
nice because q1(0) winds up looking very simple.

Because q1(x) is increasing, its minimum on its domain is q1(0). Furthermore, so long as the leading
coefficient of q2 is positive, it has a unique global minimum, and if that minimum occurs at x ≤ r,
its minimum on its domain is q2(r). And because q2(r) = r2 + q1(0) > q1(0), when the global
minimum of q2 occurs at x ≤ r, we can lower bound the second line in (??) by q1(0). We choose r
to make this happen: as the minimum of the polynomial a2x

2 − a1x− a0 occurs at x = a1/2a2, it
requires that

[
cKvp

−1/2
eff,Σ {

√
R}rω + cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}

]
/rω

2κω
≤ rω (72)
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[
cKvp

−1/2
eff,Σ {

√
R}rω + cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}

]
≤ 2κωr

2
ω (73)

−2κωr
2
ω +

[
cKvp

−1/2
eff,Σ {

√
R}rω + cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}

]
≤ 0 (74)

cKvp
−1/2
eff,Σ {

√
R}+

√
[cKvp

−1/2
eff,Σ {

√
R}]2 + 4(2κω)(cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ))

2κω
= rω

(75)

cKvp
−1/2
eff,Σ {

√
R}+

√
4(2κω)(cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ))

2κω
≥ rω (76)

which holds for this r This choice makes the leading coefficient of q2 positive as required.

q1(0) = −cKvp−1/2
eff,Σ {

√
R}rω − cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω)−Bω2
√
k(sω + sλ)} (77)

L̃(δ) ≥ κωnη
2s2ω − cα

− cKvp
−1/2
eff,Σ {

√
R}rω − cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω)−Bω2
√
k(sω + sλ)}

(78)

Let a = cKvp
−1/2
eff,Σ {

√
R}

and let b2 = cKvp
−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}

So our second line is

= −(a× rω − b2)

= −(a× (a+
√
κb)/2κ+ b2)

= −(a2/2κ+ ab
√
κ/2κ+ b2)

= −(a2/2κ+ ab/
√
κ+ b2)

= −(a2/2κ+ ab
√
κ/2κ+ b2)

= −(a/
√
κ+ b)2

≤ −[(a/
√
κ)2 + b2]

= −[
cKvp

−1/2
eff,Σ {

√
R}

√
κω

− cKvp
−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}]

(79)

Now we look at omega and lambda together to solve for s.
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L̃(δ) ≥ κωnη
2s2ω + κλpη

2s2λ − cαω+λ

−

cKvp−1/2
eff,Σ {

√
R}

√
κω

− cKvp
−1/2
eff,Σ {Bω1w(Θ⋆

sω) +Bω2
√
k(sω + sλ)}


−

cKvp−1/2
eff,Σ {

√
R}

√
κλ

− cKvp
−1/2
eff,Σ {Bλ1w(Θ⋆

sλ
) +Bλ2

√
k(sω + sλ)}


(80)

Now we put this is hashtag standard form

α′
ω =

cKvp
−1/2
eff,Σ {

√
R}

√
κω

+Bω1w(Θ
⋆
sω)

L̃(δ) ≥ κωnη
2s2ω + κλpη

2s2λ − cαω+λ − α′
ω+λ

−
[
cKvp

−1/2
eff,Σ {Bω2

√
k(sω + sλ)}

]
−
[
cKvp

−1/2
eff,Σ {Bλ2

√
k(sω + sλ)}

]
= κωnη

2s2ω + κλpη
2s2λ − a(sλ + sω)− α− α′ for a = cKvp

−1/2
eff,Σ {Bω2 +Bλ2}

(81)

A.5 Choosing r: Bounding ∥Aδωδβ∥ and ∥Aδλδβ∥

Looking at (24), we have one bivariate quadradic in two variables. ∥Σ1/2δλ∥ and ∥Σ1/2δω∥. We
want to find the minimum of the right hand side minimizing ∥Σ1/2δλ∥ and ∥Σ1/2δω∥, and so we
will take the partial derivatives and solve for the respective r values.

We start with ∥Σ1/2δλ∥.
∂

∂∥Σ1/2δλ∥
= 2κωnη

The min is at zero because we dont have linear term.

So in the situation that both ∥Σ1/2δλ∥ and ∥Σ1/2δω∥ are zero. we have that the minimum of our
problem is at

L̃(δ) ≥ κωx
2 + κλy

2+ (82a)

− 2|max(x/rω, 1)cKvp
−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}| (82b)

− 2|max(y/rλ, 1)cKvp
−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}| (82c)

− cω,λ (82d)

Where

cω,λ = 2|cKvRMSEω wΣ(Θ
⋆
sω)| for RMSEω := ∥(L′

::ω̃ − Z ′
::·ω̃ · β̃ − L′

:N + Z ′
N :· · β̃)∥

+ 2|cKvRMSEλwΣ(Θ
⋆
sλ
)| for RMSEλ := ∥(L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃)∥

+ 2|cvK2(n/peff,Σ)
1/2wΣ(Θ

⋆
s)|

+ 2|cvK2(p/peff,Σ)
1/2wΣ(Θ

⋆
λ)|

(83)
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Cases

1. x is big, and we are trying to find worst case y

(a) x > rω so we can solve for the rω as discussed, putting everything else in constant

(b) Once we have this, we can play the advesarial case with y

• two cases for the max term

• what value maximizes our lower bound

2. then the other way around, but the argument is the same

Case 1 We are going to put everything that is not a function of x into the constant term. We
are also in the case that x is big, so x > rω, which takes care of the max term for ω

L̃(δ) ≥ κωx
2+ (84a)

− 2|(x/rωcKvp−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}| (84b)

− cω,λ,y (84c)

We want to characterize rω so that the loss function is positive for all x > rω.

κωx
2 − 2|(x/rω)cKvp−1/2

eff,Σ {
√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}| (85a)

+ constantω (85b)

(85c)

This will happen if rw is larger than the larger root of this quadratic function. Triangle inequality
gives the first inequality.

b+
√
b2 + 4ac

2a
≤ 2(b+

√
ac)

2a
≤ rω (86)

plugging in for b, a, and c in last inequality

(1/rω)cKvp
−1/2
eff,Σ {

√
Rrω +Bω1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}

2kω
+

√
κωcω,λ,y

2κω
≤ rω (87)

equivalently

0 ≤ 2κωr
2
ω − (cKvp

−1/2
eff,Σ

√
R+

√
κωcω,λ,y)rω − cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +B2

√
k(sω + sλ)} (88)

Again, this will happen if rw is larger than the larger root of this quadratic function. Triangle
inequality gives the first inequality.
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b+
√
b2 + 4ac

2a
≤ 2(b+

√
ac)

2a
≤ rω (89)

2(cKvp
−1/2
eff,Σ

√
R+

√
κωcω,λ,y) +

√
2κω × cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +B2

√
k(sω + sλ)}

4κω
≤ rω (90)

ok so in order to not have to deal with c in the square root, we can also use

2(b2 + ac)

4a2
≤ r2ω (91)

now recall that b = (cKvp
−1/2
eff,Σ

√
R +

√
κωcω,λ,y) so we can write this as b = b1 + b2. Here b1 =

(cKvp
−1/2
eff,Σ

√
R and b2 =

√
κωcω,λ,y). We have that b ≤ 2

√
b21 + b22. Therefore b

2 ≤ 4(b21 + b22)

Therefore

2b21 + 2b22 + 2ac

4a2
≤ r2ω (92)

Applying this to our context

2(cKvp
−1/2
eff,Σ )2R+ 2κωcω,λ,y + 2κω × cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +B2

√
k(sω + sλ)}

16κω
≤ r2ω (93)

Let us write out what our constant term here is explicitly.

cω,λ,y = −κλy2 + 2|max(y/rλ, 1)cKvp
−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}|

+cω,λ
(94)

So we need to deal with the two cases here.

1. y > rλ

2. y ≤ rλ

Let us deal with case 1 first.

cω,λ,y = −κλy2 + 2|y/rλcKvp
−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}|

+cω,λ
(95)

so we want to max this, so we find the worst y for our bound. Let us take FOC wrt to y.

−2κλy + 2|1/rλcKvp
−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}| = 0 (96)
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therefore
1/rλcKvp

−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}

κλ
= y (97)

Now lets think about case 2:

cω,λ,y = −κλy2 + 2|cKvp−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}|

+cω,λ
(98)

So, the max occurs at y = 0

So our solution is characterized by

So now that we have gone through these two cases, we have expressions for the ”worst case” values
of y. That is they lead to the largest lower bounds on rω.

2(cKvp
−1/2
eff,Σ )2R+ 2κωcω,λ,y + 2κω × cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +B2

√
k(sω + sλ)}

16κω
≤ r2ω (99)

where

cω,λ,y = +2|cKvp−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}|+ cω,λ (100)

cω,λ = 2|cKvRMSEω wΣ(Θ
⋆
sω)| for RMSEω := ∥(L′

::ω̃ − Z ′
::·ω̃ · β̃ − L′

:N + Z ′
N :· · β̃)∥

+ 2|cKvRMSEλwΣ(Θ
⋆
sλ
)| for RMSEλ := ∥(L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃)∥

+ 2|cvK2(n/peff,Σ)
1/2wΣ(Θ

⋆
s)|

+ 2|cvK2(p/peff,Σ)
1/2wΣ(Θ

⋆
λ)|

(101)

and

rλ >
2cKvp

−1/2
eff

√
R+

√
κλcKvp

−1/2
eff

√
R[Bλ1w(Θ⋆

sλ
) +B2

√
k(sω + sλ)]

2κλ
(102)

test test

So in the EIV paper we have the ”r” condition is

|Aδθ| < ηn1/2s

so what we just did was the ability to say

|Aδω| < rω

and

|Aδλ| < rλ

where rω and rλ are defined by the values that satisfy 113 - 116
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2(cKvp
−1/2
eff,Σ )2R+ 2κωcω,λ,y + 2κω × cKvp

−1/2
eff,Σ {Bω1w(Θ⋆

sω) +B2

√
k(sω + sλ)}

16κω
≤ r2ω (103)

cω,λ,y = −κλ
(
1/rλcKvp

−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}

κλ

)2

+ 2|
(
1/rλcKvp

−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
) +B2

√
k(sω + sλ)}

κλrλ

)
cKvp

−1/2
eff,Σ {

√
Rrλ +Bλ1w(Θ

⋆
sλ
)

+B2

√
k(sω + sλ)}|

+ cω,λ
(104)

∥Xδωδβ∥2 ≥ κIE

(
∥Xδωδβ∥2

)
≥ κ

(
∥Aδωδβ∥2 + n∥Σ1/2δω∥2

) (105)

A.6 Establishing the Lower Bound (24)

A.6.1 First Order Optimality Conditions

We first write the first order optimality conditions for (ω̃, λ̃, β̃). They were calculated by taking
the respective derivatives of Equation (10). They help us bound terms later in the proof.

ω̃

0 ≤
{
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃
}′
(
L′
:: − Z ′

::· · β̃
)
[ω̃ − ω]

+ nη2(ω̃ − ψ)Σϵi(ω̃ − ω) ∀ω ∈ Ω

(106)

λ̃

0 ≤
{
L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃

}′
(
L:: − Z::· · β̃

)
[λ̃− λ]

+ nη2(λ̃− ψ)Σϵi(λ̃− λ) ∀λ ∈ Λ

(107)

β̃

0 = FOCβω + FOCβω for FOCβω =
{
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃
}′
(
Z ′
N :· − Z ′

::·ω̃

)
and FOCβλ =

{
L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃

}′
(
Z:T · − Z::·λ̃

) (108)

24



A.6.2 Break Down L(δω, δλ, δβ)

We are going to do this by looking first at the first line of (8) focusing on the ω weights. In the
first line of (8) the time weights λ do not show up, so we do not have to worry about them. Then
we are going to look at the second line of (8) focusing on the λ weights.

We are going to shorten notation. We have Y 0 = Y − Z · β̃ and Y δ = Y − Z · (β̃ + δβ).

L(δ) = Lω(δω, δβ) + Lλ(δλ, δβ) (109)

where via simple arithmetic ...

Lω(δω, δβ) = ∥Y ′δ
:: (ω̃ + δω)− Y ′δ

N :∥2 + n(η2 − 1)∥Σ1/2
ϵi ((δω + ω̃)− ψω)∥2

−
[
∥Y ′0

:: ω̃ − Y ′0
N :∥2 + n(η2 − 1)∥Σ1/2

ϵi (ω̃ − ψ)∥2
]

= ∥Y ′δ
:: (ω̃ + δω)− Y ′0

:: (ω̃)− Y
′δβ
N : + Y ′0

N :∥2

+ 2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′δ
:: (ω̃ + δω)− Y ′0

:: (ω̃)− Y
′δβ
N : + Y ′0

N :

]
+ n(η2 − 1)∥Σ1/2

ϵi δω∥2 + 2n(η2 − 1)(ω − ψ)′(Σϵiδω)

= ∥Y ′δ
:: (ω̃ + δω)− Y ′0

:: (ω̃)− Y
′δβ
N : + Y ′0

N :∥2 − n∥Σ1/2
ϵi δω∥2︸ ︷︷ ︸

1

+ 2

(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′δ
:: (ω̃ + δω)− Y ′0

:: (ω̃)− Y
′δβ
N : + Y ′0

N :

]
− (η2 − 1)n(ω − ψ)′(Σϵiδω︸ ︷︷ ︸

2

)


+ η2n∥Σ1/2

ϵi δω∥2
(110)

and arithmetic in Sec ... below yields ...

Lω(δω, δβ) = ∥ε::δω∥2 − n∥Σ1/2
ϵi δω∥2︸ ︷︷ ︸

1.1

+ ∥Aδωδβ∥2︸ ︷︷ ︸
1.3

+2(Aδωδβ)(ε
′
::δω)︸ ︷︷ ︸

1.4

(111a)

+ FOCω + FOCβω (111b)

+

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
Z ′
::·δω · δβ︸ ︷︷ ︸
2.2.2

}
(111c)

+

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
(111d)

+

[
ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸

2.1.2

]′
×
{
Aδωδβ

}
(111e)

+

[
ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸

2.1.2

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
− n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸

2.3

(111f)

+ nη2∥Σ1/2
ϵi δω∥2 (111g)

Table:
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• Term (111e)

and, analogously,
Lλ(δλ, δβ) = . . . (112)

Where equation (110) follows from the previous equation by expanding the square3 for the first
terms on the two lines, and then again for the second terms on the two lines. Now lets look at the
terms in equation (110) one by one.

1. The first term in Equation (110) is signal, and we hope it is large.

2. The second term we bound to show it is small

3. Term three is also signal and we hope is large

4. And the last term we bound to show it is small

To make notation shorter

We use
Aδωδβ = L′

::δω − Z ′
::·δω · β̃ − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ (113)

Aδλδβ = L::δλ − Z::·δλ · β̃ − Z::·δλ · δβ + (Z ′
:T · − Z::·λ̃) · δβ (114)

A.6.3 Term 1 in Eq (110)

This hasn’t really been done. Speculatively, we’ve used the bound κIE[...] ≤ [...].

Here’s an entirely unused decomposition. Maybe relevant.

Term 1 = ∥Y ′δ
:: (ω̃ + δω)− Y ′0

:: (ω̃)− Y
′δβ
N : + Y ′0

N :∥2 − n∥Σ1/2
ϵi δω∥2

= ∥Y ′0
:: δω − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ∥2 − n∥Σ1/2
ϵi δω∥2

= ∥Y ′
::δω − Z ′

::δω · β̃ − Z ′
::·δω · δβ + (Z ′

N :· − Z ′
::·ω̃) · δβ∥2 − n∥Σ1/2

ϵi δω∥2

= ∥ε::δω +Aδωδβ∥2 − n∥Σ1/2
ϵi δω∥2

= ∥ε::δω∥2 − n∥Σ1/2
ϵi δω∥2︸ ︷︷ ︸

1.1

+ ∥Aδωδβ∥2︸ ︷︷ ︸
1.3

+2(Aδωδβ)(ε
′
::δω)︸ ︷︷ ︸

1.4

(115)

A.6.4 Term 2 in Eq (110)

Now we work with Term 2 in Equation (110). We are going to break Term 2 into 6 smaller terms
since they are easier to bound.

3follows from the fact that a2 − b2 = (a− b)2 + 2b(a− b)
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2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′δ
:: (ω̃ + δω)− Y ′0

:: ω̃ − Y ′δ
N : + Y ′0

N :

]
− n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸

2

= 2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′δ
:: δω) + Y ′δ

:: ω̃ − Y ′0
:: ω̃ + Y ′δ

N : − Y ′0
N :

]
− n(ω − ψ)′(Σϵiδω)

= 2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′δ
:: δω − Z ′

::·ω̃ · δβ + Z ′
N :· · δβ

]
− n(ω − ψ)′(Σϵiδω)

= 2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′0
:: δω − Z ′

::·δω · δβ − Z ′
::·ω̃ · δβ + Z ′

N :· · δβ
]
− n(ω − ψ)′(Σϵiδω)

= 2(Y ′0
:: ω̃ − Y ′0

N :)
′
[
Y ′0
:: δω − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ
]
− n(ω − ψ)′(Σϵiδω)

= 2 (Y ′0
:: ω̃ − Y ′0

N :)
′︸ ︷︷ ︸

2.1

[
Y ′0
:: δω − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ
]

︸ ︷︷ ︸
2.2

−2 (η2 − 1)n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸
2.3

(116)

We are now going to break this term down into the terms that have noise and those that do not.

Lets look at these terms one by one.

2.1 =

[
Y ′0
:: ω̃ − Y ′0

N :

]′
=

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ + ϵ′::ω̃ − L′
N : + Z ′

N :· · β̃ − ϵ′N :

]′
=

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

+ ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸
2.1.2

]′ (117)

Now the last term is the only one with noise.

Now moving on to term 2.2.

2.2 =

[
Y ′0
:: δω − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ
]

=

[
L′
::δω − Z ′

::·δω · β̃ + ϵ′::δω − Z ′
::·δω · δβ + (Z ′

N :· − Z ′
::·ω̃) · δβ

] (118)

Now we write 2.2 into three constant parts (2.2.1) and (2.2.2) and (2.2.3) and the noise part (2.2.4).

2.2 = L′
::δω − Z ′

::·δω · β̃︸ ︷︷ ︸
2.2.1

Z ′
::·δω · δβ︸ ︷︷ ︸
2.2.2

(Z ′
N :· − Z ′

::·ω̃) · δβ︸ ︷︷ ︸
2.2.3

ϵ′::δω︸︷︷︸
2.2.4

(119)
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So the reminder of Term 2 will be all the terms of 2.1 times all the terms of 2.2

(η2 − 1)n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸
2.3

= η2n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸
2.3.1

−n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸
2.3.2

(120)

2 = (2.1.1)× (2.2.1)− (2.3.1) ≥ 0 by FOC ω (121a)

+ (2.1.1)× (2.2.2) to appear in LB (121b)

+ (2.1.1)× (2.2.3) = FOCβω . Appears in LB. (121c)

+ (2.1.1)× (2.2.4) Mean zero noise (121d)

+ (2.1.2)× (2.2.1 + 2.2.2 + 2.2.3) Mean zero noise (121e)

+ (2.1.1)× (2.2.4)− (2.3.2) Centered cross noise term (121f)

A.6.5 Proofs for Term 2 Bounds

(2.1.1)× (2.2.1) 1) Terms for FOC of ω The FOC for ω is in Equation (106). Adding terms
(2.1.1)× (2.2.1) and 2.3 together we get the conditions for the FOC for ω, so we know these terms
are positive, thus taking care of them.

(2.1.1)× (2.2.1) =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
L′
::δω − Z ′

::·δω · β̃︸ ︷︷ ︸
2.2.1

}

=

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃
]′

×
{
L′
:: − Z ′

::· · β̃
}
δω

(122)

(2.1.1)× (2.2.2) 2) No noise, and small two δ

(2.1.1)× (2.2.2) =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
Z ′
::·δω · δβ︸ ︷︷ ︸
2.2.2

}
(123)

This term will be small when the oracle prediction error ∥L′
::ω̃−Z ′

::·ω̃ · β̃ −L′
N : +Z ′

N :· · β̃∥ is small.
It will also be small because we are multiplying it by two small δ values, δω and δλ

(2.1.1)× (2.2.3) 2) 1/2 FOC for β We have from the FOC of β (Equation (108)) is

0 =
{
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃
}′
(
Z ′
N :· − Z ′

::·ω̃

)
+
{
L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃

}′
(
Z:T · − Z::·λ̃

) (124)

We have that (2.1.1)× (2.2.3) is the first half of the FOC for β times δβ. Then we have the sister
term for the second line. We see that is the same as the full FOC, just times δβ
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(2.1.1)× (2.2.3) =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N :ω̃ + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
(Z ′

N :· − Z ′
::·ω̃) · δβ︸ ︷︷ ︸

2.2.3

}
(125)

(sister term) =

[
L::λ̃− Z::·λ̃ · β̃ − L:T λ̃+ Z:T · · β̃︸ ︷︷ ︸

]′
×
{
(Z:T · − Z::·λ̃) · δβ︸ ︷︷ ︸

}
(126)

(2.1.1)× (2.2.4) 4) Mean zero noise

(2.1.1)× (2.2.4) =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
(127)

(2.1.2)× (2.2.1 + 2.2.2 + 2.2.3) 5) Mean zero noise

(2.1.2)× (2.2.1 + 2.2.2 + 2.2.3) =

[
ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸

2.1.2

]′
×

{
L′
::δω − Z ′

::·δω · β̃ − Z ′
::·δω · δβ + (Z ′

N :· − Z ′
::·ω̃) · δβ︸ ︷︷ ︸

2.2.1+2.2.2+2.2.3=Aδωδβ

}
(128)

(2.1.2)× (2.2.4) 6) Cross noise term

(2.1.2)× (2.2.4)− 2.3 =

[
ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸

2.1.2

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
− n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸

2.3

(129)
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B Concentration

B.1 (2.1.1 ) X (2.2.4)

(2.1.1)× (2.2.4) =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃︸ ︷︷ ︸
2.1.1

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
(130)

This term is the product of prediction error L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃ and the weighted
error matrix and δω. This will tend to be small when prediction error is small, for example when
L′
:: − Z ′

:: · β is low rank.

Let us define z′ = (L′
::ω̃ −Z ′

::·ω̃ · β̃ −L′
N : +Z ′

N :· · β̃)′ϵ′::S−1/2. This z′ is a subgaussian vector. With
this notation, bounding (2.1.1)× (2.2.4) is the same as bounding |z′S1/2δω| where S1/2δω ∈ S1/2Θ⋆

s.
By Talagrand’s majorizing measures theorem [Vershynin, 2018, Corollary 8.6.3], on an event of
probability 1− 2 exp

(
−u2

)
, this is bounded for all δω ∈ Θ⋆

s by c∥z∥ψ2{w(S1/2Θ⋆
s)+u rad(S

1/2Θ⋆
s)}.

When it has independent columns, we take S = I, and ∥z′|ψ2 = ∥(Σ−1/2
ε·j ε)′{Σ1/2

ε·j (L
′
::ω̃ − Z ′

::·ω̃ · β̃ −
L′
N : +Z ′

N :· · β̃)}∥ψ2 ≤ cK∥Σ1/2
ε·j (L

′
::ω̃−Z ′

::·ω̃ · β̃ −L′
N : +Z ′

N :· · β̃)∥. Thus, the following bounds hold
for all δω ∈ Θ⋆

sω on an event of probability 1− 2 exp
(
−u2

)
.

|z′S1/2δω| ≤ cK∥L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃∥(w(Σ1/2
εi· Θ

⋆
sω) + u rad(Σ1/2

εi· Θ
⋆
sω))

≤ cK∥L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃∥(wΣ(Θ
⋆
s) + u rad(Σ1/2

εi· Θ
⋆
s)) ind. rows

(131)

Taking v = u rad(Σ
1/2
εi· Θ

⋆
s)/wΣ(Θ

⋆
s) in the first case and v = u∥Σε·j∥1/2 rad(Θ⋆

s)/wΣ(Θ
⋆
s) in the

second, for which we have the common notation v = ud
−1/2
Σ (Θ⋆

s), this implies that on an event of
probability 1− 2 exp{−v2dΣ(Θ⋆

s)},

|z′S1/2δ| ≤ c(1 + v)K∥L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃∥wΣ(Θ
⋆
s) for all δ ∈ Θ⋆

sω . (132)

B.2

In this section we bound two quantities appearing in [our bound],[
ϵ′::ω̃ − ϵ′N :

]′{
Aδωδβ

}
and [ε′::δω]

′{Aδωδβ} for Aδωδβ = L′
::δω − Z ′

::·δω · β̃ − Z ′
::·δω · δβ + (Z ′

N :· − Z ′
::·ω̃) · δβ

(133)

The first one . Let AΣ be Σ1/2A where Σ is the covariance matrix of ϵ′::ω̃ − ϵN :, so this is just
g′AΣδωδβ for an identity-covariance subgaussian vector g. This is comparable to its gaussian width
(Talagrand’s comparison inequality) w(Σ1/2AΘ∗

s,r) where AΘ
∗
s,r = {Aδωδβ : (δω, δλ, δβ) ∈ Θ∗

s,r}. To
bound this quantity, we decompose AΣδβδω into two terms: its projection on a low-dimensional
subspace of IRn and the remainder. Letting PR be an orthogonal projection onto arbitrary R-
dimensional subspace, because w(A+B) ≤ w(A) + w(B) for any sets A and B,

w(AΣΩB) ≤ w(PRAΣΩB) + w(A⊥ΩB) for A⊥ = (I − PR)AΣ.
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PRAΣΩB is a set of vectors of length ≤ ∥Σ∥1/2r in a subspace of dim ≤ R, hence has width bound
c∥Σ∥1/2r

√
R. To bound the other term, we use Sudakov-Fernique, i.e.,

IE(maxXuv) ≤ IE(maxYuv) if IE(Xuv −Xwz)
2 ≤ IE(Yuv − Ywz)

2 for all u, v (134)

where Xuv = g′A⊥uv and Yuv = Rvg
′(u − w) + Ruh

′(v − z) for independent vectors of standard
normals g, h and Ru and Rv are defined in (135) below. Here u and w are values of δω and v and
z are values of δβ and we are maximizing over (u, v) ∈ Pω,βΘ

⋆
s,r, the set of pairs (δω, δβ) for which

there exists some δλ for which the triple (δω, δλ, δβ) is in Θ⋆
s,r.

Let’s check that the variance of the increments of Y is a bound on that of the corresponding
increment of X.

IE(Xuv −Xwz)
2 = IE{g′(A⊥uv −A⊥wz)}2

= ∥A⊥uv −A⊥wz∥2

= ∥A⊥uv ±A⊥wv −A⊥wz∥2

≤ ∥A⊥(u− w)v∥+ ∥A⊥w(v − z)∥ (triangle inequality)

≤ ∥A⊥□v∥op∥u− w∥+ ∥A⊥w□∥op∥v − z∥
≤ Rβ∥u− w∥+Rω∥v − z∥ for

Rβ = max
v∈PβΘ⋆

s,r

∥A⊥□v∥ and Rω = max
w∈PωΘ⋆

s,r

∥A⊥w□∥.

(135)

Here ∥A⊥□v∥ and ∥A⊥w□∥ and are the operator norms of the linear maps we get by partially
applying the bilinear operator A⊥ with its first and second arguments respectively set to w and v.
Notationally, □ stands in for the dimension that is left, indicating that partial application to v and
w are along different dimensions.

The second one .

δ′ωε::{Aδωδβ} ≤ sup
u∈Ω,(v,w)∈ΩB

u′(Avw) ≤ rad(Ω)w(AΩB) + w(Ω) rad(AΩB) (136)

where the second comparison is via Chevet’s inequality. The first term we’ve just done the width
calculation for and have a bound sω on the radius and the second is just w(Ωs) times a radius we
have a bound rω on.

In the OG paper the idea was to control ∥Aδ∥ < rω. The idea now is to see if we can do

[
L′
:: − Z ′

:: · β 0
Z ′
:: ZN : − Z ′

::

] [
δω
1

] [
1
δβ

]
< rω (137)

Let us call A =

[
L′
:: − Z ′

:: · β 0
Z ′
:: ZN : − Z ′

::

]
. We decompose A as AR + (A − AR) where AR is a

rank-R approximation to A. Taking AR to be the best rank-R approximation in terms of operator
norm, the first R terms of the singular value decomposition A =

∑
k σkukv

′
k, ∥ARx∥ ≤ ∥Ax∥ for

all vectors x. Thus, ARΘ
⋆
s,r is contained in the ball of radius r in the R-dimensional image of AR,

which has gaussian width bounded by c
√
Rr [e.g., Vershynin, 2018, Example 7.5.7].
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Now we figure out how to bound (A−AR)Θ
⋆
s,r

We rewrite the term we want to bound.

=

[
ϵ′::ω̃ − ϵ′N :

]′
×
{
L′
::δω − Z ′

::·δω · β̃ − Z ′
::δω · δβ + (Z ′

N : − Z ′
::ω) · δβ

}
=

[
ϵ′::ω̃ − ϵ′N :

]′ [
L′
:: − Z ′

:: · β 0
Z ′
:: ZN : − Z ′

::

] [
δω
1

] [
1
δβ

]
=

[
ϵ′::ω̃ − ϵ′N :

]′
A⊥uv

= Xuv

(138)

Our term is a random process Xuv. We use A⊥ to denote our square matrix of L and Z, u for the
δω vector, and v for the δβ vector. This term is tricky to bound because of the quadratic term that
is a multiple of both δω and δβ. To solve this we we create a new random process Yuv that both 1)
bounds the orginal Xuv process 2) is linear in δω and δβ, and we know how to bound linear terms.

We create this Yuv in the following 3 steps.

1. We calculate an upper bound variance of Xuv −Xwz.

V ar(Xuv −Xwz) = IE(Xuv −Xwz)
2 =

[
ϵ′::ω̃ − ϵ′N :

]′
[A⊥uv −A⊥wz]

= [A⊥uv −A⊥wz]′Σϵi·[A
⊥uv −A⊥wz]

(139)

Therefore√
V ar(Xuv −Xwz) = ∥Σ1/2

ϵi· [A
⊥uv −A⊥wz]∥

= ∥Σ1/2
ϵi· [A

⊥uv ±A⊥wv −A⊥wz]∥

≤ ∥Σ1/2
ϵi· [A

⊥(u− w)v∥+ ∥Σ1/2
ϵi· A

⊥w(v − z)]∥(triangle inequality)

≤ ∥Σ1/2
ϵi· A

⊥v∥∥(u− w)∥+ ∥Σ1/2
ϵi· A

⊥w∥∥(v − z)∥(Cauchy–Schwarz)
(140)

Let us first focus on the first term of the last line.

∥Σ1/2
ϵi· A

⊥v∥ = (141)

2. We create a Gaussian process Yuv so that Yuv − Ywz a) is linear in δω and δβ b) has variance
at least as large of the variance of Xuv −Xwz.

Yuv := ⟨g, u⟩ rad() + ⟨h, v⟩ rad() (142)

where
g ∼ N(0, I) and h ∼ N(0, I) (143)

This formula for Yuv comes from Theorem 8.7.1 (Sub-gaussian Chevets inequality) of Ver-
shynin [2018].

3. The Sudakov-Fernique inequality tells that

So we have that Yuv bounds our original process.
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B.3 Term 6

(2.1.2)× (2.2.4) 6) Cross noise term

(2.1.2)× (2.2.4)− 2.3 =

[
ϵ′::ω̃ − ϵ′N :︸ ︷︷ ︸

2.1.2

]′
×
{
ϵ′::δω︸︷︷︸
2.2.4

}
− n(ω − ψ)′(Σϵiδω)︸ ︷︷ ︸

2.3

(144)

Term (2.1.2)×(2.2.4) is not mean zero noise because it is not mean zero. Thankfully we can center it
by subtracting term 2.3, which is its mean. The mean of (2.1.2)×(2.2.4) is IE[(ϵ′::ω̃−ϵ′N :)

′×{ϵ′::δω}] =
(ω−ψ)′n(Σϵiδω) in order to create a mean zero noise term. We see that this term is not a function
of any of the β or Z terms, so it’s bounds follow directly from Hirshberg [2021]. We have that with
probability 1− 6 exp[−cmin{vdΣ(Θ∗

s), n}],

sup
δ∈Θ∗

s

∥[ϵ′::ω̃ − ϵ′N :]
′ × {ϵ′::δω} − IE[ϵ′::ω̃ − ϵ′N :]

′ × {ϵ′::δω}]∥ ≤ cvK2(n/peff,Σ)
1/2wΣ(Θ

∗
s) (145)

C Bringing Bounds together

Our proof relies on a few high-probability bounds on the terms in L̃(δ). Choose sω, sλ, rω, rλ ∈ R
and R ∈ N

Notation:

and define Θ∗ := Θ− ω̃ − λ̃− β̃

and Θ⋆
sω := {δ ∈ Θ⋆ : ∥Σ1/2

ε·j δω∥ ≤ sω} and Θ⋆
sλ

:= {δ ∈ Θ⋆ : ∥Σ1/2
εi· δλ∥ ≤ sλ}.

and Θ⋆
s := {δ ∈ Θ⋆ : ∥Σ1/2

εi· δω∥ ≤ sω and ∥Σ1/2
εi· δλ∥ ≤ sλ}.

We use
Aδωδβ = L′

::δω − Z ′
::·δω · β̃ − Z ′

::·δω · δβ + (Z ′
N :· − Z ′

::·ω̃) · δβ (146)

Aδλδβ = L::δλ − Z::·δλ · β̃ − Z::·δλ · δβ + (Z ′
:T · − Z::·λ̃) · δβ (147)

terms for the ω parts: On an event of probability 1−c exp
[
−cmin{v2ϕ−4w2

Σ(Θ
⋆)/s2, v2R, n}

]
,

all δω ∈ Θ⋆
sω satisfy

∥Xδωδβ∥2 ≥ κ∥Aδωδβ∥2 + κn∥Σ1/2
εi· δω∥

2. (148)

Bounds on terms

|(ε′::ω̃ − ϵ′N :)
′Aδωδβ| ≤ max(∥Aδ∥/r, 1)cKvp−1/2

eff,Σ{
√
Rr +B1w(Θ

⋆
sω) +B2

√
k(sω + sλ)}. (149)

|(L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃)′εδω| ≤ cKv∥(L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃)∥wΣ(Θ
⋆
sω) (150)

|[(ε′::ω̃ − ϵ′N :)
′ε′:: − IE(ε′::ω̃ − ϵ′N :)

′ε′::]δω| ≤ cvK2(n/peff,Σ)
1/2 wΣ(Θ

⋆
s). (151)
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constant bit =

[
L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃
]′

×
{
Z ′
::·δω · δβ

}
≤ ∥L′

::ω̃ − Z ′
::·ω̃ · β̃ − L′

N : + Z ′
N :· · β̃∥∥Z ′

::sω(sω + sλ)∥
(152)

terms for the λ On an event of probability 1 − c exp
[
−cmin{v2ϕ−4w2

Σ(Θ
⋆)/s2, v2R, n}

]
, all

δλ ∈ Θ⋆
sλ

satisfy

∥Xδλδβ∥2 ≥ κ∥Aδλδβ∥2 + κn∥Σ1/2
εi· δλ∥

2. (153)

|(ε::λ̃−ϵ:T )′Aδλδβ| ≤ max(∥Aδ∥/r, 1)cKvp−1/2
eff,Σ{

√
Rr+σR+1+B1w(Θ

⋆
sλ
)+B2

√
k(sω+sλ)}. (154)

|(L::λ̃− Z::·λ̃ · β̃ − L:T + Z ′
:T · · β̃)′εδλ| ≤ cKv∥(L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃)∥wΣ(Θ

⋆
sλ
) (155)

|[(ε::λ̃− ϵ:T )
′ε:: − IE(ε::λ̃− ϵ:T )

′ε::]δλ| ≤ cvK2(n/peff,Σ)
1/2wΣ(Θ

⋆
s). (156)

constant bit =

[
L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃

]′
×
{
Z::·δλ · δβ

}
≤ ∥L::λ̃− Z ′

::·λ̃ · β̃ − L′
:T + Z ′

:T · · β̃∥∥Z::sλ(sω + sλ)∥
(157)

D D.2

In equation 30 we had defined L̃ and then we spent appendix A bounding the terms. Therefore we
can lower bound L̃ with the terms on the right hand side of 79.

L̃(δ) ≥ κω∥Aδωδβ∥2 + κωn∥Σ1/2δω∥2 + κλ∥Aδλδβ∥2 + κλn∥Σ1/2δλ∥2 (158a)

− 2|(ε′::ω̃ − ϵ′N :)
′Aδωδβ| (158b)

− 2|(ε::λ̃− ϵ:T )Aδλδβ| (158c)

− 2|(L′
::ω̃ − Z ′

::·ω̃ · β̃ − L′
N : + Z ′

N :· · β̃)′εδω| (158d)

− 2|(L::λ̃− Z::·λ̃ · β̃ − L:T + Z:T · · β̃)εδλ| (158e)

− 2|[(ε′::ω̃ − ϵ′N :)
′ε′:: − IE(ε′::ω̃ − ϵ′N :)

′ε′::]δω| (158f)

− 2|[(ε::λ̃− ϵ:T )ε:: − IE(ε::λ̃− ϵ′:T )ε::]δλ| (158g)
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